
Practical security guidance for real-world
users and designers of authentication systems

Thesis Proposal

Joshua Tan

September 6, 2019

Abstract

A wealth of security guidance is available to users and security system designers.
Much of this guidance assumes an idealized world in which users are motivated and
attentive when completing security tasks interjected in front of their primary task; and
in which system designers are free to design security systems that subject their user
base to however poor a usability experience deemed necessary in order to maximize
security benefits for those users. However, these idealized-world assumptions do not
reflect reality. Users perform security as a secondary task, typically unmotivated to
exert more than the minimum possible effort to accomplish security tasks, which they
ultimately perform in an inattentive, error-prone manner.

I will demonstrate how practical guidance can be given to users that assumes real-
world settings but that does not abandon the worthwhile goal of improving security for
those who do not want to or cannot take the security-optimal approach. First, I will
show how users can be guided to create strong passwords while minimizing negative
usability impacts, using password policies that incorporate a minimum neural-network-
derived password-strength requirement. Second, I will show how latent features of
passwords can be learned that can then be leveraged to improve password-creation
guidance with more relevant and comprehensive text feedback. Lastly, I will show
how practical guidance can be given to system designers in authentication domains
other than passwords, using public-key verification as a case study. Specifically, I will
examine ways of exposing fingerprint verification to ordinary users that remain effective
at protecting against man-in-the-middle attacks in low-risk situations or usability-
focused environments.

1

Contents

1 Introduction 3

2 Thesis themes 4

3 Background and related work 5
3.1 Passwords . 5

3.1.1 Password reuse . 5
3.1.2 Measuring resistance to guessing attacks 6
3.1.3 Password-creation guidance . 8

3.2 Interpretable explanations for text-input black-box models 9
3.2.1 Dimensionality reduction . 9
3.2.2 Approximate complex model with simpler, interpretable model 10
3.2.3 Relevance of input features in neural network predictions 10

3.3 Public-key fingerprints . 12
3.3.1 Fingerprint applications . 13
3.3.2 Usability of fingerprints . 13
3.3.3 Entropy as a security metric . 15

4 Previous work 16
4.1 Can unicorns help users compare crypto key fingerprints? 16

4.1.1 Research goals . 16
4.1.2 Methodology . 16
4.1.3 Results . 18

5 Ongoing and future work 18
5.1 Minimum-password-strength requirements vs. blacklists 18
5.2 Modeling password guessability with autoencoder-derived heuristic features . 25

6 Thesis outline 31

7 Timeline 32

2

1 Introduction

More and more of our lives are becoming integrated into the digital world. This has enabled
new, improved ways of living. Social media networks allow us to share life events privately
with friends. We can send money near instantaneously across the world using cryptocurren-
cies. Secure messaging tools allow people to have private conversations through the Internet.
Family photos and videos can be stored in a digital family archive and passed down through
generations.

This digital migration of our lives also necessitates protections against adversaries oper-
ating in the digital world. Privately shared information should stay private. Money stored
in digital wallets should be protected from thieves. Private online conversations should be
free from government or ISP eavesdropping. Digital family archives should be safe from
hackers, accessible only by family. A primary way this protection is achieved is through
authentication systems, such as those based on passwords or public-key encryption.

Unfortunately authentication systems are often designed in ways that make them ineffec-
tive. A primary reason for this is that they don’t consider the motivations and capabilities
of typical end users. Average users do not understand nor have the time to contemplate
specific ways in which an attacker might try to guess their account password when they are
creating a password for that account. Many are more concerned with creating a password
that they can remember and that satisfies the (annoying) password policy required for that
particular account. Designers of authentication systems should embrace this reality and cre-
ate tools and mechanisms that can be securely used without unrealistic expectations about
user motivations, knowledge, and effort.

Just as system designers might make assumptions of end users that are unrealistic and
impractical, the guidance provided by security experts for authentication system designers
can also assume unrealistic conditions and thus be impractical for those designers to actu-
ally implement. Expert-recommended guidance for end-user authentication may inhibit the
usability of the service it is meant to protect. This negative impact on the user experience
often may be enough for a usability-focused organization to rule out security improvements
based on that guidance.

This proposed thesis will explore authentication system designs that are easier for aver-
age users to use in a secure, effective way. Specifically, this work investigates methods that
leverage password-strength neural networks at password-creation time to encourage stronger
passwords without reducing password memorability or causing undue user annoyance. This
work also examines how usability-focused organizations might incorporate public-key verifi-
cation to leverage its security guarantees even for inattentive or distracted users, for low-risk
scenarios in which software-automated comparison methods are unavailable.

3

2 Thesis themes

Develop neural-network-driven security mechanisms for improving
password security

This thesis will explore ways of using neural-network-based security mechanisms to encour-
age users to create guess-resistant passwords. Prior work [1] has demonstrated how neural
networks trained on leaked password data can be deployed in a browser setting and used
to quantify and communicate to the user an estimate of password strength, via a password
meter bar. We will extend this work by examining the effect of imposing minimum-strength
password requirements within a password creation policy, where password strength is mea-
sured using a neural network model fine-tuned during training for a specific password policy.
An important goal of this work is to understand how such minimum-strength password re-
quirements affect both usability during password creation and the memorability of created
passwords.

We will also explore ways of using neural networks to improve password-strength text
feedback in password meters. Specifically, we will use neural networks to help identify novel
password guessability heuristics, visually map these heuristics to the individual password
characters comprising them, and create a linear model based on interpretable heuristics to
predict password strength.

Provide practical recommendations to authentication system de-
signers operating in real-world, usability-focused environments

We will examine usability and security challenges faced by security architects who must
design systems in which users perform security tasks while distracted or otherwise inattentive.
This is especially relevant for security architects who wish to introduce security mechanisms
for a usability-focused user base. Using public-key verification as a case study, we will perform
an online user study to examine the security and usability provided by different fingerprint
representations and comparison modes under user-adverse conditions for simulated man-in-
the-middle attacks.

4

3 Background and related work1

This section first describes related work on password security, including the frequency and
types of password reuse, metrics for quantifying the strength of a password against guess-
ing attacks, and tools researchers have created to assist users in creating strong passwords.
Next, we discuss prior work on learning interpretable explanations for black-box machine-
learning models, covering topics such as dimensionality reduction, cluster visualization, and
methods for learning the relevance of input features in model predictions. Lastly, we provide
an overview of public-key fingerprints, including actual application that use them, stud-
ies of their usability, and how entropy can be used to quantify the strength of fingerprint
representations and attacks.

3.1 Passwords

3.1.1 Password reuse

Prior work has found that users heavily rely on password reuse (both exact and partial reuse)
in order to manage the large number of online accounts they accumulate over time [3–6].
While this helps reduce memory burdens associated with having unique passwords for each
account, it also can reduce the effective security of passwords against attackers.

Choong et al. studied the password management behaviors of U.S. Department of Com-
merce employees using an online survey [7]. They found that employees had an average
of 9 work-related accounts that required login, with a median of 5 of those accounts being
frequently used. Around 40% of employees wanted the workplace to transition to a SSO
system to help them manage passwords. To reduce the burden of remembering or storing
unique passwords for each workplace account, employees relied on a variety password reuse
strategies: 67% made minor changes to existing passwords, 43% reused an existing password,
38% recycled a previously expired password, and 34% created new passwords by modifying
a common “password root” (e.g., 2PwdRt&, PwdRt42%). When asked what an ideal login
process would entail, employees did not show a strong preference for using PINs over pass-
words; although most employees preferred a system that used biometrics or the badges they
already carried, employees mentioned passwords about as often as PINs, at approximately
5% in both cases.

Pearman et al. examined password reuse for online accounts in an in situ study of 154
participants [8]. In their study, the average participant used approximately ten unique
passwords. Participants heavily relied on password reuse, with 40% of participants reusing
80-90% of passwords. For the average participant’s unique passwords, 67% were exactly
reused, 63% were partially reused, and 79% were reused in both ways (exactly and par-
tially). Most of this partial reuse involved simple changes to existing passwords (the most
common reuse strategy involved changing a single character) and more than half of the
time these changes were consolidated at the beginning and end of the reused passwords.
Passwords for work-related accounts were approximately three times as likely to be reused
compared to passwords for non-work-related accounts. Participants also reused passwords

1Part of this is excerpted from the related work section of CHI 2017 [2].

5

across categories of websites, often in unsafe ways. For example, 85% of passwords on finan-
cial sites were reused (either partially or exactly), and of these, 95% were reused for other
types of websites.

Zhang et al. studied password reuse in the context of password expiration policies [9].
They developed an algorithm that would use knowledge of a user’s previously expired pass-
words combined with a set of password transformation rules to guess that user’s newer
replacement password. They evaluated their algorithm by testing it against password his-
tories associated with defunct university accounts. Their results confirm that many users
create new passwords by modifying old ones, and that this information can be leveraged by
attackers to improve password guessing success. Even when limiting password guesses to five
attempts, an attacker with knowledge of a previously used account password could use their
algorithm to successfully guess a future account password for an average of 17% of accounts.

Haque et al. examined how easily passwords created for a user’s low-value accounts
could be leveraged to crack passwords created by the same user for high-value accounts [10].
Participants in their study were asked to create passwords for different categories of websites.
Website categories differed according to the degree with which a user might be incentivized
to secure an account in that category. For example, participants were asked to create a
banking account password, as well as a password for a weather forecasting website. They then
attempted to use the John The Ripper (JTR) password cracking tool to guess participant’s
high-value account passwords, using only their low-value account passwords (i.e., no other
cracking dictionary). Nearly 20% of high-value account passwords were able to be guessed in
this way. This supports the idea that users partially reuse password across account categories,
even in unsafe directions (reusing low-value account passwords for high-value accounts), and
that a significant portion of unsafe partial password reuse can be guessed using a default
configuration of a freely available password cracking tool.

3.1.2 Measuring resistance to guessing attacks

Security researchers have attempted to quantify the guessability of secrets, which is the resis-
tance of secrets (e.g., passwords, PINs) to guessing attacks. Current metrics for quantifying
the guessability of secrets fall into two categories: metrics based on statistical properties
of the secret distribution and metrics based on using (or simulating) actual secret-cracking
tools.

Statistic-based metrics can be further divided into entropy-based metrics and guess-based
metrics. Among entropy-based metrics, Shannon entropy has seen the most use. NIST
provided a heuristic for estimating the Shannon entropy of passwords, which studies have
used and extended [11]. Shannon entropy can be interpreted in many ways. It characterizes
the “uncertainty” of a secret distribution, or equivalently how many bits are needed to
optimally compress a distribution. While this can be a useful metric of resistance to guessing
attacks, especially in the case of cryptographic keys that are randomly generated, in general
it has no direct relationship to guessability and can be significantly influenced by rare events
(e.g., a small set of users that choose large randomly-generated cryptographic keys as their
password) [12]. This limits its use for quantifying the guessability of user-chosen secrets.
Another useful metric is min-entropy, which quantifies security based only on the most
probable secret.

6

Guess-based statistical metrics more closely align with a model of an attacker that makes
sequential guesses, e.g., an attacker that tries to guess common passwords to break into a set
of accounts. Guesswork quantifies the expected number of guesses that would be required to
correctly guess a set of secrets, assuming the attacker orders her guesses in an optimal way,
i.e. guessing the most probable secret first, with subsequent guesses in order of decreasing
probability. Bonneau argues that guesswork does not reflect resistance to actual attackers,
since it averages the number of guesses needed to compromise all accounts, whereas in
practice attackers may ignore harder-to-guess secrets and where they may be limited by a
security policy in the number of guesses they can attempt [12]. Partial guesswork metrics
can capture this. Marginal success rate or β-success-rate measures the expected fraction of
accounts that can be compromised (or, equivalently, the expected probability of breaking an
individual account) if an attacker is limited to β guesses per account. α-guesswork measures
the number of guesses required by an attacker to compromise a proportion α of accounts
(or, equivalently, to have an expected probability α of breaking an individual account) [12].
2

The other general category of guessability metrics are metrics based on actual secret-
cracking tools. A variety of cracking tools exist, all of which are tailored to cracking pass-
words: oclHashcat and John the Ripper use wordlists and mangling rules to quickly generate
guesses, probabilistic context-free grammar (PCFG) tools generate guesses according to a
grammar-based model that represents passwords using character class terminals (e.g., letters,
digits, symbols), and Markov model tools generate guesses according to a trained character-
level Markov model. The most recent development in cracking tools is the modeling of
passwords using artificial neural networks. The features used by a neural network are gen-
erated as a result of training and not easily interpreted.3 By attacking a password dataset
and observing the point (guess number) at which each password is guessed by a particular
tool, a distribution of guess numbers can be generated. This can be translated into useful
metrics such as the expected percentage of passwords guessed for a given number of guesses,
similar to the marginal success rate metric. A refinement of this approach is to combine
guess numbers for a set a popular password-cracking tools into a summary metric. For ex-
ample, researchers have created Password Guessability Service (PGS), a service which allows
other researchers to generate min-auto guess numbers for sets of passwords [13]. For a given
password, that password’s min-auto guess number is defined as the smallest guess number
among five password-cracking tools: oclHashcat, John the Ripper, and three password mod-
els (Markov, PCFG, neural network). Min-auto guess numbers were found to approximate
the guessing success typical of expert attackers [13].

Guess-based statistical metrics and tool-based guessability metrics are closely related;
both attempt to characterize resistance to an attacker. The primary differences between
them are the assumptions about the particular guesses made by an attacker, and the order
in which they are made. Guess-based statistical metrics are useful for characterizing secu-
rity against a best-case attacker who has complete knowledge of the distribution of secrets

2This improves upon a related metric, α-work-factor (also known as marginal guesswork), by modeling
the fact that an intelligent attacker will stop guessing for an account once one of those guesses succeeds.

3The features learned by a neural network that models passwords could theoretically include the same
features used by PCFG or Markov models, as long as those features are useful for accurately modeling
passwords in the training set.

7

and orders guesses for an account starting with the most probable secret. This provides a
worst-case-scenario security analysis, which may be appropriate for high-risk applications.
Their weakness is that they may overestimate security concerns; no practical attacker will
have complete knowledge of the secret distribution, and these distributions will differ based
on many contextual factors, including the sub-population being attacked [12]. More real-
istic characterizations of security can be provided by tool-based metrics, but the ability to
generalize conclusions from these metrics will necessarily be limited; cracking tools can be
configured and trained in many different ways besides those that were used to calculate
metric values.4

3.1.3 Password-creation guidance

Prior work by Ur et al. [14] demonstrated that data-driven password meters are useful for
helping users create more guess-resistant passwords. Besides the standard password strength
meter, the password meter in that work introduced text feedback intended to guide users
toward stronger passwords, by explaining aspects of the user’s current password that could
be improved. In that study, text feedback was the result of a regression of min-auto guess
numbers onto 21 heuristic features associated with guessable passwords. For each heuristic
feature, the meter would detect if that heuristic was present in the current password. It
would then display up to three pieces of text feedback describing any detected heuristics and
how addressing them could strengthen the password. Results from a Mechanical Turk user
study in which participants created passwords using a password meter incorporating such
text feedback showed that the feedback helped participants create stronger passwords.

Concrete password suggestions were also explored. These suggested improvements were
optional, and took the form of a slightly modified password that users could choose to replace
their current password. The slightly modified password was the result of an algorithm that
made modifications in a random manner to remove heuristic features commonly used in pass-
words. The modifications that were made included those addressing aspects besides those
shown in the actual text feedback, in order to increase the space of possible modifications
utilized in the suggested improvements [14].

User study results reported by that same work found most participants did not choose to
explicitly show suggested improvements. Among those that did, most found it useful, and a
slight majority reported that it helped make their password stronger, albeit not by choosing
suggested improvements verbatim, but more often by serving as inspiration for what to
change in their existing password. Those that did not find the suggested improvement useful
were either concerned about password memorability when using exact suggestions or about
the trustworthiness of the algorithm creating those suggestions. Based on these results, Ur
et al. recommended keeping concrete password improvements as optional [14].

4Researchers attempt to mitigate this by using configurations and training data representative of a so-
phisticated attacker (e.g., configurations recommended by Hashcat, publicly leaked passwords). However, it
is still possible that an attacker could use more effective configurations or additional training data to increase
guessing effectiveness.

8

3.2 Interpretable explanations for text-input black-box models

A variety of methods exist for extracting features from text that are useful for machine-
learning predictions about that text. For character-levels models, where input instances
take the form of strings of characters, straightforward representations include one-hot or
index-integer encodings, which indicate each character in the instance by its index in the
input alphabet. Character-level embeddings can be used to transform input characters to a
lower dimensional, continuous feature space. Summary features based on n-grams can also
be used, which quantify frequencies of each n-length character sequence in a given input
instance. Features can also be hand-crafted based on expert knowledge or experimentation.
For example, a heuristic feature indicating whether a password starts with an uppercase
letter may be useful for predictions about that password’s strength.

While these approaches can extract features useful for machine-learning algorithms, some
are more easily interpretable than others (e.g., hand-crafted heuristic features compared to
character embeddings). In addition, while explanations of a model’s prediction may require
reference to interpretable features, interpretable features themselves are not necessarily suf-
ficient for an interpretable explanation.

3.2.1 Dimensionality reduction

One barrier to interpretable explanations is if explanations depend on a large number of
(potentially interacting) features. To address this, dimensionality reduction techniques can
be used. A common technique is to apply principal component analysis (PCA) and represent
features in terms of their principal components. While useful for generating uncorrelated
input features, principal component features can be difficult to interpret, which limits their
use for explaining model predictions. An approach to dealing with this is to describe what
each principal component represents in terms of more interpretable features, by observing
which interpretable features correlate with each principal component. For example, Smith
et al. used clustering on PCA features to investigate how dietary patterns associate with
socio-demographic variables [15]. Pearman et al. also clustered study participants according
to their password reuse behavior and described clusters in terms of the characteristics of
passwords users in those clusters created [8]. A downside of this general approach is that it
won’t directly lead to discover of new interpretable features.

Autoencoders Another way of reducing dimensionality is to compress data using an au-
toencoder. Autoencoders are a type of neural network that are often used for unsupervised
feature learning. In an autoencoder, the input to the network is also the target output of the
network. They are typically used to compress input data by learning an encoding of that
data in a lower dimensional space. An autoencoder consists of an encoder, decoder, and a
bridge, where the bridge refers to the innermost hidden layer separating the encoder and
decoder that captures the encoding. An important characteristic of encodings produced by
autoencoders is that they are data-specific; they learn an encoding useful only to represent
the specific data they were trained on (or data closely resembling that data).

Given a sufficiently high capacity encoder or decoder, autoencoders can simply learn
the identity function without learning any useful features of the input data. Many possible

9

approaches exist for reducing dimensionality in autoencoders, including undercomplete au-
toencoders, denoising autoencoders, variational autoencoders, and contractive autoencoders.
These approaches help the autoencoder to capture only those input features most salient for
reconstruction.

Visualization of clusters Dimensionality reduction can be combined with clustering al-
gorithms and visualization techniques to elucidate high-level concepts that are represented
in a reduced-dimensionality feature space. Principal components for a set of instances can
be projected into two dimensions and visualized. Clusters of of data instances may then
convey a type of data similarity captured by that feature space. This is similar to how
the t-distributed stochastic neighbor embedding (t-SNE) visualization technique visualiza-
tion works. Researchers have visualized hidden layer activations of neural networks using
both t-SNE [16] and PCA projections [17] in order to understand features utilized by those
networks. A challenge with this approach is that visualization of clustered instances may
not reveal interpretable concepts associated with those clusters, especially for more complex
concepts.

3.2.2 Approximate complex model with simpler, interpretable model

A general approach to explaining complex models is to train a simpler, but more inter-
pretable model to approximate the predictions of the complex model. For example, Ur et
al. utilize linear regression of password guessability on high-level heuristic password features
to approximate a more complex neural network [14]. A downside of this approach is that
predictions made by a globally-trained linear model may not reflect the complex model’s
behavior for specific input instances.

Ribeiro et al. introduce LIME, a technique for providing locally-faithful explanations for
black-box models based on interpretable features from a simpler model, e.g., a sparse linear
model [18]. This is similar to the approach taken by Ur et al. [14], except that in LIME,
the simpler linear model is generated specifically for a given input instance. This means
that learned weights for the linear model may differ from a globally learned model; the
simpler model is trained to be faithful to the behavior of complex model locally around the
input instance. A drawback of LIME is that it can be expensive to implement for networks
with a densely-populated input feature space [19]. In addition, finding a suitable simpler
model (including its features) is a requirement for LIME. For a given complex model, not all
linear models will be powerful enough to explain the complex model’s predictions. Further,
a linear model may not be sufficient to produce locally-faithful explanations under LIME if
the complex model is highly non-linear even in the restricted local space [18].

3.2.3 Relevance of input features in neural network predictions

Another approach to explaining the complex neural network predictions is to understand the
relevance of input-space features for particular predictions output by the model.5 Although

5Researchers have used “relevance,” “attribution,” and “contribution” to mean the same thing [20]. Leino
et al. distinguish “influence” from “attribution,” reserving “influence” for measures based on gradient-based
sensitivity [21].

10

these approaches each utilize neuron activations in the network to characterize input feature
relevance, the manner in which they are utilized differs between approaches. Most prior
work has explored input feature relevance in the context of pixel-wise explanations for con-
volutional neural network predictions, however, many of the same methods can be applied
to explain predictions for text-input neural networks, e.g., the relevance of characters in a
password instance on that password’s strength classification.

Identify input instances that activate hidden units Prior work has attempted to
determine the relevance of input features using hidden unit activations invoked by specific
sets of input instances. Karpathy et al. examined character-level recurrent neural networks
models for text. In that work, they searched for high-level features learned by neurons, as
expressed by patterns in their activation levels as they process text input exhibiting specific
high-level characteristics [22]. Although many cells did not have interpretable patterns,
they did find some interpretable cells, including cells that identified line length, cells that
tracked quotes or brackets, and cells that turned on inside source code comments. A similar
approach is to identify sets of input instances that trigger similar activations in a set of
hidden units; similarities in those input instances may reveal the function of the hidden units,
which can help explain network predictions. Researchers have built interactive hidden-state
visualization interfaces to help identify high-level semantic concepts learned by recurrent
neural networks [23, 24]. While useful, the interactive nature of these tools is more suited
for manual, hypothesis-driven feature space exploration and is also less useful for identifying
character-level patterns in latent feature spaces with many dimensions. More critically,
identifying high-level hidden space features learned by a network solely using unit activation
levels is inadequate for discovering all relevant features; neurons can be highly activated
without necessarily contributing to a prediction outcome [21].

Gradient-based sensitivity analysis Besides observing how much of a classification
prediction can be attributed to input features, input feature relevance can be defined in terms
how sensitive the classification prediction is to the particular value (sometimes referred to
as gradient-based saliency). This approach utilizes the gradient of the output prediction to
determine input feature relevance. Li et al. explored gradient-based sensitivity analysis for
NLP models, examining which individual input words contribute to the prediction output
by those models [25]. They also applied sensitivity analysis to hidden unit gradients as
input words were consumed to understand the high-level features learned by hidden units.
Although their analysis revealed some useful insights into internal network behavior, they
found first order derivatives were unable to captures all the relevant information needed to
interpret model classification. Specifically, if the units in the network were highly saturated
at the time of gradient measurement, a relevant characteristic of the input may not be flagged
as relevant for a given classification [25].

Integrated Gradients The potential for gradient-based sensitivity analysis to fail to iden-
tify all relevant input features can be explained by its lack of sensitivity. In order for an
attribution method to satisfy sensitivity, instances that differ with respect to one feature
only and have different predictions should assign a non-zero attribution to that feature [19].

11

Sundararajan et al. propose Integrated Gradients to address this [19]. This approach also
utilizes gradients of an output quantity for attribution, but instead of a single gradient, their
attribution method accumulates the attributions of input variables at all points along the
path from the baseline to the input instance (e.g., from the all-zero word embedding vector
to the input instance word embedding). This approach was shown to be more effective at
highlighting relevant input features for a given network output. Dhamdhere et al. utilize
Integrated Gradients as well, but do so to identify the function and importance of hidden
nodes in terms of input features [26]. Their attribution metric, conductance, is measured by
the flow of Integrated Gradient attributions through particular hidden nodes.

Influence-directed explanations Leino et al. combine the gradient-based analysis and
Integrated Gradients approaches to determine high-level features influential for a particular
model outcome [21]. They also utilize network gradients, however, they calculate the gradient
of an outcome of interest with respect to activations in a hidden layer of the network. They
then identify class-specific “experts”, sets of hidden layer neurons that are most influential for
a given classification (those having high internal influence). Finally, they use the Integrated
Gradients method to back-propagate expert activations to the input feature space, in order
to visualize high-level concepts. A benefit of using internal influence to highlight input
variable relevance is that high-level, rather than instance-specific, features can be learned
and highlighted.

Layer-wise relevance propagation An alternative approach to identifying input feature
relevance is to use relevance-score algorithms, in particular layer-wise relevance propagation
(LRP) [27]. Ding et al. apply LRP-based visualization to explain internal network behavior
in a neural machine translation model. Specifically, they examine hidden state activations
in the network to infer the relevance of source and target word contexts at generating target
words [28]. Arras et al. describe how LRP can be applied to recurrent neural network
models containing LSTM layers [29]. Recently, Kauffmann et al. showed how LRP can be
used to explain cluster assignments using NEON, using a two step approach in which a k-
means model is first converted into a neural network, following by application of existing LRP
techniques [30]. A criticism of LRP as an attribution method is that it breaks implementation
variance, a property that requires two functionally equivalent networks to always produce
identical attributions [19]. A consequence to this is that prediction explanations could be
attributed to spurious correlations if collinear dimensions exist in the feature space.

3.3 Public-key fingerprints

Public-key encryption can be used to secure communications such as email or instant mes-
saging. For Alice to send a message to Bob that only Bob can read, she needs to encrypt
the message with Bob’s public key. Bob will use his private key to decrypt the message.
One type of attack against such communications is a man-in-the-middle (MITM) attack, in
which an attacker inserts himself or herself between the two communicating parties in such
a way that neither party is aware of the attacker. Once inserted, the attacker can eavesdrop
or actively manipulate communications.

12

(a) OpenSSH Visual
Host Key

(b) Vash (c) Unicorn

Figure 1: Examples of graphical fingerprint representations.

In order to prevent MITM attacks, it is important that Alice encrypts her messages with
the actual public key belonging to Bob (and vice versa). In many situations, there may not
be a trusted and secure key server that Alice can use to obtain Bob’s legitimate key online.
In these cases, Bob can still host his public key online somewhere that Alice can retrieve it.
Then, Bob only needs to provide Alice with his key fingerprint—a digest of the full key that
makes manual key comparison feasible—through some secure channel (such as in person).
By manually comparing fingerprints, both sides of the communication channel can detect
when the other side has been replaced by an imposter.

3.3.1 Fingerprint applications

Well-known applications that make use of fingerprints include GnuPG [31], a tool for en-
crypting communications, and OpenSSH [32], commonly used for remote access to servers.
Off-the-Record (OTR) Messaging applications provide multiple ways to authenticate mes-
sage recipients, including fingerprint verification [33]. Many popular secure chat smartphone
apps also use fingerprints, usually in a layered approach in which fingerprint comparison is
optional [34,35].

A variety of fingerprint representations and formats are used, the majority of which are
textual. Examples of textual representations used in real systems are shown in Table 1.
Graphical representations have seen limited use; examples include Peerio [36], which uses an
avatar representation, and OpenSSH Visual Host Key, which resembles ASCII art (Figure 1).

3.3.2 Usability of fingerprints

Public key cryptography has long had usability and adoption issues [37–41]. Fingerprints
have been part of the problem. In a user study on OTR messaging, participants were confused
by fingerprints and struggled to verify them correctly [42]. In order to make fingerprint
verification more usable, researchers have explored a variety of approaches.

One way to make comparison easier is to shorten fingerprints. This approach is used in
Short Authentication Strings (SAS). SAS can provide reasonable security using only a 15-bit
string [43], though they are primarily useful in synchronous environments. SAS-based meth-

13

GnuPG 3A70 F9A0 4ECD B5D7 8A89

D32C EDA0 A352 66E2 C53D

OpenSSH ef:6d:bb:4c:25:3a:6d:f8:79:d3:a7:90:db:c9:

b4:25

bubblebabble xucef-masiv-zihyl-bicyr-zalot-cevyt-lusob-

negul-biros-zuhal-cixex

OTR 4206EA15 1E029807 C8BA9366 B972A136 C6033804

WhatsApp 54040 65258 71972 73974

10879 55897 71430 75600

25372 60226 27738 71523

Table 1: Examples of textual fingerprint representations used in actual applications.

ods are less useful for public-key fingerprint verification, which is traditionally asynchronous.
Alternatively, the computational security of small fingerprints can be increased by slowing
down the hashing algorithm using a stretching function.

Adding structure to a fingerprint representation may make it easier to compare. Textual
fingerprint representations can be separated into smaller chunks. Representing fingerprints
as pronounceable words or sentences may also facilitate comparison. For graphical repre-
sentations, structured images resembling abstract art have been suggested for improving
usability. These include Random Art [44] and OpenSSH Visual Host Key, which was in-
spired by Random Art [45]. Another way to add structure is to represent fingerprints as
avatars, such as unicorns [46] or robots [47].

Different comparison modes have also been proposed, primarily for SAS-based device
pairing or synchronous authentication [48,49]. These include compare-and-confirm (compare
two strings and indicate if they match), compare-and-select (compare one string to a set of
others and select the matching option), and copy-and-enter (copy a string from one device
to another and let the device itself perform the check). Compare-and-select has also been
used for anti-phishing tools that ask users to select the website they want to visit from a
list, rather than ask for a yes/no answer to whether users would like to proceed to a given
website [50]. Prior work has postulated that compare-and-select may help prevent users from
“verifying” fingerprints without actually comparing them [48,51].

A number of usability studies on device pairing have explored different fingerprint repre-
sentations and comparison modes [52–54]. They considered representations such as numbers,
images of visual patterns, and phrases, as well as various comparison modes. In each of these
studies, participants performed fingerprint comparison tasks in a lab setting. In some cases,
participants were also subjected to a simulated MITM attack [52, 54]. These studies had
mixed findings; for example, Kainda et al. conclude that compare-and-confirm and compare-
and-select should not be used because it is subject to security failures [52], while Kumar et
al. recommend that compare-and-confirm with numbers be used due to its low error rate and
comparison speed [54]. An important note about the fingerprints tested in these lab studies
is the size of fingerprints tested, which ranged from 15-20 bits; for traditional asynchronous
public-key fingerprint verification, a larger fingerprint size would be needed.

In a 400-participant online study, Hsiao et al. examined the speed and accuracy of fin-
gerprint comparisons under different representations [55]. In contrast to lab studies, their

14

methodology enabled statistical testing. A specific fingerprint representation they tested was
Random Art [44], which can encode bit sizes large enough to be suitable for use as cryp-
tographic key fingerprints. In order to generate attacks against Random Art fingerprints,
researchers selected visually similar fingerprint pairs from 2000 randomly-generated finger-
prints. They found Random Art performed well in both accuracy and speed, recommending
its use for color-display devices with sufficient computational power.

Other than recent work by Dechand et al. [56], scant research has tested representations
suitable for key fingerprints. That study involved a large-scale, within-subjects experiment
on Mechanical Turk (MTurk) in which participants compared fingerprints displayed in dif-
ferent textual representations, including hexadecimal, numbers, words, and sentences. They
measured comparison speed and accuracy, and they also recorded whether participants cor-
rectly compared fingerprints for multiple simulated 280 attacks. They found that hexadecimal
performed significantly worse than numbers and sentences in both attack detection rates and
usability ratings. In addition, they found that sentences had a significantly higher attack
detection rate than numbers, while also being rated as more usable.

3.3.3 Entropy as a security metric

Entropy can be used to measure the computational security afforded by different fingerprint
representations. If users compare fingerprints fully, then the entropy of a fingerprint repre-
sentation quantifies the average work needed to find a key whose fingerprint collides with the
target fingerprint. If users do not compare fingerprints completely, but only compare certain
aspects, then an intelligent attacker may attempt to only match the aspects he expects will
be actually compared. This type of attack, in which the adversary attempts to find a visually
similar fingerprint to the target fingerprint, has been explored for both the hexadecimal and
graphical fingerprints used in OpenSSH [57, 58]. More recently, the previously mentioned
study by Dechand et al. investigated users’ ability to detect such attacks for different textual
representations [56].

The reduction in entropy of the original representation (after fixing the matched aspects)
can be used to quantify the work an attacker must spend to produce a key whose fingerprint
matches specific aspects of the target fingerprint. This approach to quantifying attacker
work has the added benefit of being independent of the particular binary encoding used for
a fingerprint. A 260 attack corresponds to an attacker that generates 260 keys, computes
the fingerprint for each, and then (manually or programmatically) selects the key whose
fingerprint maximizes similarity according to some metric. Stevens et al. estimate the cost of
renting CPU/GPU time from EC2 to find a SHA-1 collision, which requires resources similar
to those to perform a 260 attack on fingerprints. They estimate this cost to be between 75K
and 120K USD, which they note is within the budget of criminal organizations [59].

15

4 Previous work

4.1 Can unicorns help users compare crypto key fingerprints?

4.1.1 Research goals

• Understand the security and efficiency of public-key fingerprint verification for users
subjected to practical constraints, including habituation to benign scenarios, time pres-
sure, and comparison difficulties.

• Explore fingerprint verification for graphical fingerprint representations and using the
compare-and-select comparison method.

4.1.2 Methodology

We conducted a between-subjects experiment to evaluate and compare the usability and
security of fingerprint representations and configurations. We recruited participants from
MTurk in August 2016. We required participants be 18 years or older and live in the United
States. Our protocol was approved by our universitys IRB. We advertised the study as a
“role-playing activity involving technology and communication in the workplace” that would
take about 20 minutes. We compensated participants $3, with the opportunity to earn a $1
bonus. As our activity was not designed for use on tablets or smartphones, we asked that
participants use a desktop or laptop computer. Participants were randomly assigned to a
condition, which determined the fingerprint representation and configuration they saw.

We asked participants to imagine they worked as an accountant at a company that was
updating its employee database. To perform this update, participants had to retrieve the
social security numbers (SSNs) for 30 employees and enter them into a database. We chose
SSNs to motivate the need for secure communication. In the U.S., SSNs are highly sensi-
tive because knowing an individuals SSN can enable identity theft and have other financial
ramifications. Our activity web page divided the browser window into two sections that
mimicked the appearance of a computer screen and a desk (Figure 2). The computer screen
section displayed a spreadsheet-like database where participants would need to fill in missing
SSN details for employees. Several business cards were sitting on the desk. A stopwatch and
information about the participants progress completing the task appeared in the top right
corner.

We provided the instructions for the activity via an interactive tutorial. Participants
could repeat the tutorial any number of times until they were comfortable proceeding, and
the on-screen stopwatch did not begin until after the tutorial ended.

At the start of a task, a chat window appeared on the simulated computer screen in-
forming participants of an incoming message from one of the 30 employees. To proceed,
they had to perform a security check. Shortly afterward, a dialog box was displayed on the
computer screen containing a fingerprint and instructions to compare it to the fingerprint
on the employees business card, which appeared simultaneously on the desk.

For our baseline configuration, a security check involved comparing two fingerprints (one
in the security check dialog box and one on the business card) and pressing a button to
indicate if they were the same. We informed participants that this check was needed to ensure

16

Figure 2: Screenshot of the task. This example is the compare-and-confirm, simultaneously
visible, hexadecimal condition.

a secure chat session and avoid potential eavesdroppers. Depending on which fingerprint
representation was shown, we provided guidance on what differences participants should look
for when comparing fingerprints. If the participant indicated that the fingerprints matched,
the chat window displayed a message from the employee with her SSN. The participant
was instructed to type the SSN into the database. If the participant instead indicated that
fingerprints did not match, the chat message instructed the participant to instead enter
“ERROR” in the database. Each participant repeated this task for 30 employees. For one
of these employees, the comparison task involved a simulated MITM attack, in which the
legitimate key fingerprint was replaced with a visually similar, but distinct fingerprint. The
extent of fingerprint similarity was limited according to computational resources required to
produce a key with that fingerprint, for various attacker strength levels.

We instrumented our activity to record participants database entries, security-task de-
cisions, and detailed timing information. We also recorded their browser user agent strings
to determine whether participants used a tablet or smartphone. For one condition in which
users had to toggle between two views, we recorded the number and timing of toggles.

Afterwards, participants filled out a survey. In this survey, we told participants whether
they had missed our attack and asked them to explain why they thought they missed or
detected that attack. To aid in memory, we showed the fingerprint pair corresponding to
the attack alongside these questions. We asked participants to describe their strategy for
comparing fingerprints, respond on a Likert scale to statements about the fingerprints they
saw, and provide general demographic data.

17

4.1.3 Results

• Compare-and-select approach in which fingerprint options are dissimilar performs poorly
for key-fingerprint comparisons.

• For high-risk situations, none of the tested fingerprint representations or configurations
are suitable, due to successful attack rates. In such situations, manual comparison
should be avoided in favor of automated approaches (e.g., using QR codes).

• For low-risk situations where usability is paramount, graphical fingerprint represen-
tations may provide an intuitive and fast method of manual key verification. Given
participants’ tendency to look for large rather than small differences, an ideal graph-
ical representation should make it computationally difficult to find visually similar
fingerprint instances.

This study is complete and was published at CHI 2017 [2].

5 Ongoing and future work

5.1 Minimum-password-strength requirements vs. blacklists [on-
going]

Blacklists are an established approach used to prevent users from creating weak passwords,
where a password might be considered weak because it is known to be commonly used
(and thus a likely candidate an attacker would try) or because common configurations of
popular password-cracking tools would guess that password. For example, NIST recommends
blacklisting passwords known to be compromised [60].

In current work, we are taking a closer look at blacklists and neural networks (NN) in the
context of password-creation meters. The high-level goal of this experiment is to help users
create strong but memorable passwords. Specifically, we plan to experimentally test the ef-
fectiveness of two types of mechanisms for accomplishing this goal: blacklists and minimum
neural-network-derived password-strength requirements. We examine the feasibility of re-
placing blacklist requirements with a requirement based on a neural-network-derived strength
estimate (minNN). Neural-network-strength-based requirements may lead to stronger pass-
words, while also being easier to manage and deploy, especially when system administrators
wish to prevent the creation of a large number of passwords.

A secondary goal of our study is to provide concrete recommendations to the Carnegie
Mellon University Security Information Office on components to include in a future update to
their password meter. One of our conditions constitutes the actual CMU password-creation
policy (CMU-current), including the blacklist (and blacklist algorithm) it applies.

5.1.1 Experimental factors

We consider three experimental factors in which password policies can vary: blacklist
(including blacklist matching algorithm), minimum neural-network-estimated strength, and

18

composition policy specifying the number of required character classes and minimum pass-
word length.

Blacklist There are many ways to implement a blacklist. Blacklist implementations can
be characterized by the list of strings in which checks are made and the matching algorithm
determining whether a check returns as a positive or negative match. For blacklist lists, we
test a wordlist constructed by prior work [14] (CHI17 blacklist); this blacklist also performed
well in retrospective analyses on leaked data, by rejecting weak passwords with minimal
impact to strong passwords. We also consider a blacklist consisting of 555 million passwords
known to have been previously exposed as part of a data breach [61] (HIBP blacklist).
Lastly, we test the blacklist used by Carnegie Mellon University for student, staff, and
faculty university accounts.

We consider four types of blacklist matching algorithms: case-insensitive full-string (ci-
fullstring), case-sensitive full-string (fullstring), an algorithm that strips numbers and digits
and then performs case-insensitive full-string (strip-ci-fullstring), and a case-insensitive sub-
string matching algorithm considering substrings five or more characters long (ci-substring-
5+). The strip-ci-fullstring algorithm is similar to a recommendation made in prior work [62]
and to the current CMU blacklist matching algorithm.

minNN For minimum neural-network-estimated password-strength cutoffs (minNN), we
chose to experiment with 106 and 1012. We came up with these thresholds based on results
from retrospective-policy experiments on leaked passwords, according to two criteria: (1) the
smallest threshold that would result in a cumulative percentage of passwords guessed that
was lower than the percentage guessed under CMU-current at all guessing points from 100

to 1014, and (2) similar to the first but with respect to a corresponding policy that replaced
the minNN cutoff with a standard blacklist.6

Composition policy We experiment with composition policies ranging from the basic
policy requiring passwords to be at least 8 characters long (1c8) to stricter policies requiring
all four character classes (lowercase letters, uppercase letters, symbols, and digits) and a
length of at least 8 characters (4c8). Besides 1c8, the particular policies we selected were
either recommended in prior work (1c16, 2c12, 3c12, 4c8) [63–68] or seemed promising based
on our retrospective-policy experiments (3c8).

5.1.2 Experimental conditions

Here are the 15 experimental conditions we will test:
1. 3c8
2. 4c8
3. 1c8
4. 3c8, minNN=106

5. 1c8, minNN=1012

6In the current PGS implementation, enumeration-based approaches (JTR, Hashcat) make between 1013

and 1015 guesses.

19

6. 1c8, minNN=106

7. 3c12, minNN=106

8. 1c16, minNN=106

9. 2c12, minNN=106

10. CMU’s current password policy7

11. 3c8, CHI17 blacklist w/ ci-fullstring
12. 1c8, CHI17 blacklist w/ ci-fullstring
13. 1c8, HIBP blacklist w/ fullstring8

14. 1c8, CHI17 blacklist w/ strip-ci-fullstring9

15. 1c8, CHI17 blacklist w/ ci-substring-5+

We chose not to test password policies that included combinations of minNN and blacklist
requirements, as retrospective leaked password study analyses suggested the addition of a
blacklist tended to do very little with respect to guessed passwords once a minNN threshold
was imposed. We also chose to only test conditions that including a minimum password
length of at least 8 characters, as our PGS password strength estimates assume this require-
ment. In addition, passwords consisting of less than 8 characters can be easily bruteforced,
making them unsuitable for protection against offline attackers.

5.1.3 Neural network training

Different NN models were trained according to the following process: first, models were
trained on PGS-compatible, 1c8-compliant password training data. Then, for non-1c8-policy
models, we used transfer learning. Specifically, we started training those models from the
final 1c8-model weights, potentially with feature layer freezing (we chose whichever guessed
more effectively in initial experiments).

NN models were trained on a dataset that we constructed and denote PGS3, consisting
of PGS-compliant passwords in the LinkedIn, Mate1, RockYou, and 000webhost datasets.
Tables 2 and 3 describe these models. In the prior PGS + +-trained NN model, training
began from all PGS++ data (i.e. 1c1) and secondary training was performed on the subset
of data satisfying the specific policy-model being trained (e.g., 1c8, 1c16). Freezing of feature
layers was experimented with for 1c16. Another major difference for the PGS3 models is that
they each include a word embedding layer as the first layer, instead of a one-hot encoding
layer. There are also some differences between the JavaScript model architecture used in
prior work by Melicher et al. [1] and our study; our TensorflowJS models use LSTM layers
instead of the JRZ2 and time-distributed dense layers applied in their models.

We also trained two sizes of models, each trained using code extended from work by
Melicher et al. [1] to use a Tensorflow-based backend: a large Keras model with 1000 fully-
connected units and 512 LSTM units, and a small Keras model with 200 units each of
fully-connected and LSTM units. We also create model variants that could be included in a
webpage by converting the small Keras models into corresponding TensorflowJS models.

Currently we use a length-based heuristic score (length was the most impactful heuristic

74c8, CMU blacklist w/ strip-ci-fullstring unless len(password) >= 20, max same character = 3 unless
len(password) >= 20, max len = 100

8similar to NIST recommendation
9USEC17 [62] recommendation

20

Policy PGS++ (old) PGS3 (new)

1c8 73.4 million 32.8 million
1c16 2.5 million 1.5 million
2c12 13.3 million 5.4 million
3c8 13.6 million 5.7 million
3c12 4.1 million 1.8 million
4c8 311 thousand 599 thousand

Table 2: Training data used for PGS3 models. Each PGS3 model was trained on the subset
of training data corresponding to the model’s character class policy.

Policy Large model Small model

1c8 From scratch From scratch
1c16 From 1c8 weights, w/ freezing From 1c8 weights, w/ freezing
2c12 From 1c8 weights, w/o freezing From 1c8 weights, w/o freezing
3c8 From 1c8 weights, w/o freezing From 1c8 weights, w/o freezing
3c12 From 3c8-no-freeze weights, w/ freezing From 3c8-no-freeze weights, w/ freezing
4c8 From 3c8-no-freeze weights, w/ freezing From 3c8-no-freeze weights, w/o freezing

Table 3: Training methods used for large and small PGS3 models.

found in prior work [14]) to rate a password not meeting the character class and length
requirements of a given password-policy model (the neural network was not trained on such
data and so would produce inaccurate estimates for such passwords).

Our hypothesis is that minimum neural network strength requirements are a better mech-
anism for guiding users toward strong and memorable passwords than blacklists are. Initial
retrospective experiments on leaked passwords, in which we take a random sample of leaked
passwords, partition them into allowed and rejected sets, and then visualize the resulting
guess curve, suggest that weak passwords are more often rejected when using minimum
strength cutoffs. Our retrospective testing datasets included 000webhost, Yahoo, and Com-
cast password leaks.

5.1.4 Methodology

We plan to verify this hypothesis using a user study.10 This will allow us to evaluate
passwords created in a controlled environment created under a specific policy (as opposed
to only retroactively applied). Prior work has shown that retrospective password studies
can be misleading, e.g., retroactively subsetted 4c8 passwords originally from a 1c8 policy
tend to be stronger than those created under a 4c8 policy [69]. Without a user study, we do
not know what password a user would create in place of a blacklisted creation attempt; the
best we could do to account for this would be to normalize allowed-password guess curves,
which assumes that, after attempted a blacklisted password, users would pick new passwords
randomly with respect to the allowed-password distribution. Also, a user study will allow us

10This user study has recently finished running; collected data is ready for analyses.

21

to investigate password creation usability and password memorability, which retrospective
studies cannot examine. Additionally there are potential issues with the use of password
leak data itself: we don’t always know which particular constraints or requirements were
imposed on passwords at creation time (and if this changed over time, i.e. effective policies
differed for passwords in the same leak); and leaked passwords may be for accounts that
users view as non-important, as so put less effort into protecting.

Changes to the password meter from the Ur et al. study [14] include: different implemen-
tation of NN models, no specific-password suggestions, randomized order of character classes
in text feedback, and no use of heuristic scoring unless the neural network is incompatible
with a particular user’s web browser client (such data will be analyzed separately). In prior
work, the lower of the log10 of the (scaled) neural network score and heuristic score was
chosen as the final password score, which then was then translated into a bar fill amount [1].
In our work, we chose to no longer use heuristic score as a determining factor in password
meter bar fill, unless the neural network did not function for technical reasons. Initial re-
sults suggests our updated neural network models password guesses more accurate, and so
the heuristic score was deemed unnecessary.

We will measure frustration with particular password policies via study dropout rates
between different conditions, as well as password creation and recall sentiment questions in
the user surveys. When comparing password recall, we will only analyze data for participants
who: typed in their password from memory (as self-reported in the survey); who said they
didn’t reuse their study password (as self-reported); and who didn’t copy and paste their
password in the recall tasks (based on keystroke data).

One potential confounding factor in comparing neural-network cutoff to blacklist re-
quirements is that using different text feedback for the two types of mechanisms may lead
to results that differ because of the different text feedback, not only because of differences
in which sets of passwords were allowed or rejected. To address this, one approach would
be to use the exact same text feedback for both, in order to evaluate the rejection mecha-
nism separately from the feedback text. We chose not to follow this approach and instead
show slightly different text feedback based on the rejection mechanism. Certain rejection
mechanisms may lend themselves to easier-to-understand text feedback explanation and we
wanted to capture this aspect in our evaluation.

In our current password experiment, feedback on whether a password meets requirements
or not is shown interactively in real-time as the user types their password. Because of this,
we don’t know exactly when a given string constitutes something a user would have actually
tried submitting versus when it represents a string they had no intention of submitting (i.e.,
they were still typing). This would be useful to know because it sheds light on password
creation usability. We attempt to mitigate this issue using a few approaches: we instrument
when the user presses the enter or tab keys while inside the password field (pressing the enter
key does nothing in the meter, but users might press it out of habit when trying to submit
a form), and in the post-creation survey we directly ask users if a password they wanted to
create was rejected due to blacklist or minNN reasons (we show a screenshot of the relevant
feedback; if they remember, we ask them to attempt to recall the rejected passwords as
further support).

22

5.1.5 Planned statistical analyses

Specific statistical analyses will be conducted to answer research questions. We will com-
pare the CMU-current condition to potential replacements, which include 3c8+minNN=106

and 1c8+minNN=1012. In order to be a suitable replacement candidate, we hope to find
a strict improvement (in terms of proportion of passwords guessed) over CMU-Current up
through the 1014 range. If our user study does not show convincing evidence that such
minNN policies are viable replacement candidates, our blacklist-based conditions may still
suggest an improved policy; such policies may include “3class8+CHI17 blacklist w/ case-
insensitive-fullstring matching” and “1c8+HIBP blacklist”.

Other research questions will be answered by comparing two specific conditions differing
with respect to only one factor, in order to understand the impact of that factor.

We will compare class-composition+length policies to class-composition+length+minNN
policies to answer the question of whether introducing a minNN requirement leads to stronger
passwords (as expected) without: making password creation take significantly longer (in a
practical sense) or a frustrating process; resulting in passwords being created that users
have a difficult time remembering or which they store insecurely; or leading to either strong
passwords being rejected or weak passwords being allowed.

We will compare minNN conditions to corresponding blacklist conditions to understand
whether minNN requirements can replace blacklists without reducing security against guess-
ing attacks. An important aspect we want to consider is whether minNN requirements are
more or less frustrating to users during password creation. In the case that a system admin-
istrator incorporates a minNN requirement into their organization’s password policy, we also
want to determine the appropriate configurations (composition policy and threshold value)
that should be be recommended in order to provide comparable security against guessing
attacks (by comparison to effective security blacklist-based policies would provide). For this
will compare:
• “3c8 policy + CHI17 blacklist” to “3c8+minNN=106”
• “1c8 policy + CHI17 blacklist” to “1c8+minNN=1012”

We want to understand the appropriate length requirements for policies incorporating
both a character-class-composition requirement and a minNN requirement. We are inter-
ested in answering these questions: Do longer length requirements or more character-class
requirements improve the security of passwords policies incorporating minNN requirements,
or are length requirements captured by minNN requirements? Are minNN requirements
more frustrating to users during creation or do they result in less memorable passwords? To
answer these questions, we will compare the following conditions):

• “3c12+minNN=106” to “3c8+minNN=106”
• “1c16+minNN=106” to “1c8+minNN=106”
• “2c12+minNN=106” to “3c12+minNN=106”

A secondary question we will explore is: in the case that an organization cannot or will
not use a minNN requirement, which specific blacklist configurations should be used?11 To
answer this, we will compare the following conditions to each other:

11We focus on recommendations for 1c8 policies. 1c8 policies with only a blacklist may not be appropriate
for high-security settings, but in that case a minNN requirement may be appropriate anyway.

23

• 1c8 + CHI17 blacklist w/ case-insensitive fullstring matching
• 1c8 + HIBP blacklist w/ fullstring matching
• 1c8 + CHI17 blacklist w/ strip-symbols-and-numbers then case-insensitive fullstring

matching
• 1c8+CHI17 blacklist w/ case-insensitive substring matching, with the minimal consid-

ered substring length being 5 characters

For each of the above, the specific statistical tests planned will compare both security
and usability aspects. We will use the following tests:

• Pairwise (comparing 2 conditions)

– Comparing proportion of weak passwords (strength < 107) that are allowed: Fish-
ers exact test

– Comparing proportion of medium-strength passwords (107 <= strength < 1013)
that are rejected: Fishers exact test

– Comparing proportion of strong passwords that are rejected (strength >= 1013):
Fishers exact test

– Comparing percent of passwords guessed between at different guessing cutoffs:
Fishers exact test (Possible cutoffs include 1014 (bruteforce, offline attack) and
103 (extended/gradual online attack)

– Comparing guess curves: Log rank test

• Omnibus

– Comparing proportion of medium-strength/strong passwords that are rejected, or
proportion of weak passwords allowed: Chi-squared test of independence

Lastly, we wish to determine the impact of each individual factor in a password policy on
password strength. This includes interactions between factors (e.g., in the case a blacklist
only impacts guessability if there is the policy lacks a minNN requirement). To answer
this, we will conduct a Cox proportional hazards regression using data from all conditions
except CMU-current (since it is unusual in how it differs from the other policies). In this
regression, the dependent variable will be password guessability as measured by PGS min-
auto. We could also explore other dependent variables such as whether participants recalled
their password in part 2 (using a logistic regression model). The independent variables in
the regression will be:

• Minimum password length (8, 12, 16)
• Number of required character classes (1-4)
• minNN threshold (0/none, 106, 1012)
• Blacklist file and matching algorithm (none, CHI17+ci-fullstring, HIBP blacklist w/

fullstring, CHI17 blacklist w/ strip-ci-fullstring, CHI17 blacklist w/ ci-substring-5+)

We plan to consider all two-way interactions between independent variables and apply
backwards model selection based on BIC.

24

5.2 Modeling password guessability with autoencoder-derived
heuristic features

5.2.1 Motivation

Participants in the study by Ur et al. [14] reacted overall positively to password meter text
feedback. However, there remain ways in which this feedback might be improved to encourage
stronger passwords. This includes showing password-creation text feedback based on a more
comprehensive set of commonly used password patterns and highlighting the specific parts
of the candidate password that text feedback pertains to.

Identify additional guessability heuristics The heuristic features leveraged in prior
work for text feedback [14] were identified by experts based on commonly found patterns in
leaked passwords. Although these heuristics were found sufficient to model password guess-
ability reasonably well, the identification of that set of heuristics was a manual process and
thus the resulting heuristic set may not be comprehensive. Other commonly used patterns
may exist that have evaded detection by experts but which an intelligent adversary might
nonetheless leverage to increase the chances of attack success. In order to find such patterns,
a more data-driven method for identifying common password patterns is desirable.

Highlight password characters associated with identified heuristics A component
of the password meter used in prior work [14] that is related to text feedback was concrete
suggested improvements to users’ candidate passwords. Although suggested concrete im-
provements to passwords may not always be desired or trusted by users, a component of
them that was largely viewed positively in that work was how the suggestions highlighted
specific parts of users’ existing password that could be changed. A possible modification to
text feedback is to incorporate this aspect, by highlighting the specific part(s) of the pass-
word that feedback is associated with. This might be especially useful for conveying complex
heuristic patterns in users’ passwords that a data-driven approach to identifying heuristics
patterns might identify. In addition, initial results from user studies on password meters
incorporating minimal password-strength requirements suggest users can become frustrated
when they do not know what to change to satisfy such strength requirements. A mechanism
for highlighting the pertinent parts of users’ existing passwords that they could then modify
to satisfy minimum strength requirements would be useful in these cases.

5.2.2 Proposed methodology: Overview

Details of the proposed methodology differ depending on the specific plan chosen. For
all plans, an autoencoder will be trained in order to perform unsupervised feature learning
of high-level password patterns. The next step will involve grouping a set of password into
clusters based on the high-level patterns they contain. This will be accomplished using a
clustering approach (by training a deep k-means neural network or by applying standard
k-means to the learned encoding).

In order to explain cluster patterns using semantic, interpretable descriptions of password
patterns, we will have experts manually inspect the passwords assigned to each cluster. If

25

deep k-means was used, we will first implement LRP to visualize the specific characters
attributed to each cluster, which may help identify complex patterns. Regardless of the
clustering technique used, we can also visualize cluster soft-assignments (distances to each
cluster) for a set of passwords using two-dimensional projections.

Next, for the set of heuristics we were able create meaningful and interpretable explana-
tions for, we will perform a linear regression of NN guess numbers onto those heuristics. We
will also update the regression models used by prior work [14] to reflect guess numbers for
newly constructed NN models. Finally, we will evaluate the ability of our newly constructed
heuristics to model password strength by evaluating and comparing goodness-of-fit measures
for each model. We will also analyze safe and unsafe errors to explore possible future model
improvements.

Here are outlines of three possible study plans, in terms of the specific study components
each plan would require. The following section will expand on each study component.

Plan A Identify heurstics with help of LRP visualizations

1. Train autoencoder

2. Train deep k-means neural network

3. Implement LRP visualization

4. Expert identification of heuristics associated with each cluster

5. Perform regression of NN guess numbers onto new set of heuristics

6. Perform error analysis and goodness-of-fit evaluations

Plan B Use deep k-means for heuristic clustering

1. Train autoencoder

2. Train deep k-means neural network

3. Expert identification of heuristics associated with each cluster

4. Perform regression of NN guess numbers onto new set of heuristics

5. Perform error analysis and goodness-of-fit evaluations

Plan C Use standard k-means for heuristic clustering

1. Train autoencoder

2. Perform standard k-means clustering

3. Expert identification of heuristics associated with each cluster

4. Perform regression of NN guess numbers onto new set of heuristics

5. Perform error analysis and goodness-of-fit evaluations

26

5.2.3 Proposed methodology: Component details

Train autoencoder (all plans; 4 weeks) As a first step in generating password-specific
text feedback, we plan to use a password autoencoder. This autoencoder will take a password
as input, encode it into a reduced-dimensionality representation, and decode that password
encoding back into the original input space. The architecture of the encoder will consisted
of embedding layer, stacked bi-directional LSTM layers, following by a fully-connected layer
as the autoencoder bridge (Figure 7).

Embedding layer
(character-level)

Bi-directional LSTM

Bi-directional LSTM

Password
(input)

State

Fully-connected layer
(tanh or sigmoid activations)

Fixed-size encoding

Input
(dim 30)

Decoder

Reconstructed
password

Encoder

Figure 3: Proposed autoencoder architecture. The decoder weights will be initialized with
the state of the encoder weights. Once trained, the encoder could have it weights frozen and
be used independently of the decoder.

We plan to implement our autoencoder using the seq2seq encoder-decoder framework
for Tensorflow [70]. We will experiment with differently-sized models, varying in number
of nodes in the encoding, decoding, and embedding layers. All models will incorporate a
bidirectional recurrent neural network (RNN) encoder and a unidirectional RNN decoder.
Both encoder and decoder will use either LSTM or GRU cells for activation units. For all

27

models, a single fully-connected hidden layer (the bridge layer) will separate the encoder
and decoder. The variant of autoencoders we will use is undercomplete autoencoders, which
reduce dimensionality by constraining the bridge layer to have a dimension smaller than that
of the input. This forces the autoencoder to capture only the input features most salient for
reconstruction.

We will quantify the ability of the autoencoder to recreate passwords using the BLEU
(Bilingual Evaluation Understudy) metric, commonly used for evaluating the accuracy of
machine translation. Although we can compare our password autoencoder to the perfor-
mance of other autoencoders, our ultimate goal is not to reconstruct passwords exactly, but
rather to reconstruct passwords in terms of their high-level features.

Train deep k-means network (Plans A, B; 2-3 weeks) To understand password
concepts represented in the compressed feature space and to enable concepts to be mapped to
specific parts of input passwords, we will apply deep k-means clustering [71] to the password
encoder model (Figure 4). Prior work has demonstrated how to perform LRP for recurrent
neural networks with LSTM layers [29]. Recent work has also shown how k-means clustering
can be “neuralized,” enabling LRP-based explanations for cluster assignments [30]. For the
neuralized k-means network, the optimization problem is:

min
∑
ik

δik||Enc(x)− µk||2

where δik is an indicator variable for whether data point i is assigned to cluster k, Enc(x)
is the encoding of password x, and µk is the centroid of cluster k [30].

The benefit of neuralizing k-means is that LRP can then be used to highlight specific
characters in a given password that are associated with each learned cluster (Figure 5).

An alternative approach would be to set the encoder to have k units in the bridge and
avoid an additional clustering step. However, this would be less flexible for modifying the
number of bridge layer units. By introducing the deep k-means step, we do not need to
retrain the autoencoder in order to change the number of learned clusters.

The clustering algorithm will be applied to randomly selected subset of the autoencoder
training data.

Perform standard k-means (Plan C; 2 weeks) We will perform k-means clustering
not using the deep k-means network, but instead using the standard k-means algorithm on
a set of password encodings (the output of the encoder layers).

Implement LRP visualization (Plan A; 2-3 weeks) We will apply LRP to back-
propagate soft-assignments to clusters (distances to cluster centroids) to the input layer of the
network. This will allow us to create heatmaps of relevant input characters for each heuristic-
mapped cluster. Figure 6 demonstrates how LRP-based cluster-assignment explanations
could be applied to passwords.

28

Password
(input)

cluster c
membership

Enc(x)

h1 h2 ... hk

a1 a2 ... aj

w

fc

distance to each
cluster

Figure 4: Architecture of neural network for performing deep k-means.

Password
(input)

Enc(x)

h1 h2 ... hk

a1 a2 ... aj

w

distance to each
cluster

heuristic 1 heuristic 2 heuristic k...

Figure 5: Illustration of LRP for associating individual password characters with a learned
heuristic.

29

7

Predictable capitalization Predictable sequence
of character classes

Predictable numeric sequences

1337 substitutions

A1337P@sw0rd
(User-entered password)

10

3
5

Figure 6: Illustration of how high-level patterns in a password could be measured and
attributed to specific input characters. The colored numbers connecting the user-entered
password to cluster centroids represents the distance to each of those centroids (i.e. how
much that pattern is manifested in the password).

Expert identification of heuristics (all plans; 3 weeks) We plan to use the decoder
portion of the autoencoder to decode cluster centroids, which will provide a prototype de-
scribing each learned cluster [72]. We will have one or more researchers examine clusters
of password instances to identify patterns. Projections of cluster soft-assignments into two
dimensions will help in this process. In Plan A, we can also make use of LRP highlighting
to help identify high-level patterns.

It will be important to validate that the high-level password concepts identified by the
autoencoder have been correctly identified, in order for feedback based on those concepts
to be relevant. Methods for doing so include individually removing or substituting char-
acters in the password identified by the network as being associated with the high level
concept [72]. If the high-level concept has been correctly identified, then the encoding of the
modified password should reflect this. For example, if a concept for keyboard patterns has
been associated with a given cluster and evidence of this concept is found in the password
encoding of “qwertyababab” (via small distance to the corresponding cluster centroid), then
the encoding of “ababab” should reflect the absence of that concept. Related, passwords con-
structed to contain similar concepts should produce similar encodings (e.g., “qwertyababab”
and “zxcvbnababab”) [72].

Perform guess number regression onto heuristics (all plans; 2 weeks) In order to
make use of newly identified heuristic features, we need to understand their overall effect on
password strength. This step will estimate these effects using linear regression for a given set
of passwords. If a learned password pattern has no effect on password strength, a heuristic

30

based on that pattern would not be useful for text feedback and so that pattern could
be discarded from the regression model as part of the model selection process. Similarly,
heuristics we are unable to map to interpretable heuristics would not be useful for text
feedback and could be excluded from the regression model.

This component will also require updated heuristic weights for the regression model used
in prior work [14]. These will need to be updated because we want to compare our new
regression model to prior work using the more accurate TensorflowJS models, as well as
using password-policy-specific models.12

Perform error analysis and goodness-of-fit evaluations (all plans; 1 week) Using
previously trained, large neural networks modeling guessability as ground truth, we will
examine the extent of safe or unsafe prediction errors made by the new heuristic regression
model. This may shed light on potential ways to improve our model, including missing
regression features or interactions between features.

We will also evaluate and compare goodness-of-fit measures (e.g., adjusted R2) for the
new regression model as well as for models based on prior work [14]. This will provide
insight into how well password guessability can be expressed using our learned heuristics.
We plan to perform this analysis for different sets of passwords (randomly-selected, weak,
medium, and strong); this will explore how well our heuristics can model guessability across
the password-strength spectrum. We may explore performing similar regressions for sets
of passwords differing according to a single dimension other than password strength, e.g.,
number of character classes, to explore how model coefficients and goodness-of-fit change
between different levels off that dimension. Corrections for multiple testing will be applied
as appropriate for any hypothesis tests that are made.

6 Thesis outline

1. Introduction

2. Background and related work

(a) Passwords

(b) Interpretable explanations for text-input black-box models

(c) Public-key fingerprints

3. Password-creation policies with neural-network-driven minimum-password-strength re-
quirements

4. Modeling password strength using neural-network-derived heuristic features

5. Public-key fingerprint representations that help users detect MITM attacks

6. Conclusion

12These neural network models have already been trained.

31

7 Timeline

August 2019

• Begin statistical analysis for minimum-strength vs. blacklist study

September 2019

• Finish statistical analysis for minimum-strength vs. blacklist study in early September

• Write minimum-strength vs. blacklist study paper

• Begin training autoencoder before end of September

October 2019

• Finish training autoencoder by end of October

• Begin training deep k-means neural network as soon as autoencoder training is com-
pleted

November 2019

• Begin implementation of LRP algorithm as soon as deep k-means training is completed

• If deep k-means training not finished by 11/15

– Switch to standard k-means

– Skip LRP implementation

• Begin expert identification of heuristics as soon as either LRP implementation is fin-
ished or standard k-means has been implemented

December 2019

• Finish expert identification of heuristics by 12/22

• Begin linear regression analyses and good-of-fit evaluations as soon as expert identifi-
cation has finished

January 2020

• Finish linear regressions and evaluations by 1/15

• Begin autoencoder paper as soon as linear regressions and evaluations have finished

• Prepare for job interviews

32

February 2020

• Finish autoencoder paper

• Begin job interviews

March 2020

• Write concluding chapters of thesis

• Continue job interviews

April 2020

• Defend thesis

May 2020

• Graduate

33

Train
autoencoder

Train
deep k-means

Implement
LRP

Run
standard k-

means

Expert ID
of heuristics

Linear
regression

& evaluation

Write
paper

[Start before 10/1]

[Finish by 11/1]

[Not finished by 11/15][Finish by 11/15]

[Finish by 12/1][Finished or not
finished by 12/1]

[Finish by 12/22]

[Finish by 1/15]

Figure 7: Diagram of timeline with task decision points.

34

References

[1] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin, and L. F. Cra-
nor, “Fast, lean, and accurate: Modeling password guessability using neural networks,”
in Proceedings of the 25th USENIX Security Symposium, Aug. 2016.

[2] J. Tan, L. Bauer, J. Bonneau, L. F. Cranor, J. Thomas, and B. Ur, “Can unicorns help
users compare crypto key fingerprints?” in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. New York, NY, USA: ACM, 2017, pp.
3787–3798.

[3] D. Florencio and C. Herley, “A large-scale study of web password habits,” in
Proceedings of the 16th International Conference on World Wide Web, ser. WWW
’07. New York, NY, USA: ACM, 2007, pp. 657–666. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242661

[4] R. Wash, E. Rader, R. Berman, and Z. Wellmer, “Understanding password choices:
How frequently entered passwords are re-used across websites,” in Twelfth Symposium
on Usable Privacy and Security (SOUPS 2016). Denver, CO: USENIX Association,
2016, pp. 175–188. [Online]. Available: https://www.usenix.org/conference/soups2016/
technical-sessions/presentation/wash

[5] E. Hayashi and J. Hong, “A diary study of password usage in daily life,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’11. New York, NY, USA: ACM, 2011, pp. 2627–2630. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1979326

[6] S. Gaw and E. W. Felten, “Password management strategies for online accounts,” in
Proceedings of the Second Symposium on Usable Privacy and Security, ser. SOUPS
’06. New York, NY, USA: ACM, 2006, pp. 44–55. [Online]. Available:
http://doi.acm.org/10.1145/1143120.1143127

[7] Y.-Y. Choong, M. Theofanos, and H.-K. Liu, United States Federal Employees’ Password
Management Behaviors: A Department of Commerce Case Study. US Department of
Commerce, National Institute of Standards and Technology, 2014.

[8] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin, L. F. Cranor,
S. Egelman, and A. Forget, “Let’s go in for a closer look: Observing passwords in their
natural habitat,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp.
295–310. [Online]. Available: http://doi.acm.org/10.1145/3133956.3133973

[9] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern password
expiration: An algorithmic framework and empirical analysis,” in Proceedings
of the 17th ACM Conference on Computer and Communications Security, ser. CCS
’10. New York, NY, USA: ACM, 2010, pp. 176–186. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866328

35

http://doi.acm.org/10.1145/1242572.1242661
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/wash
http://doi.acm.org/10.1145/1978942.1979326
http://doi.acm.org/10.1145/1143120.1143127
http://doi.acm.org/10.1145/3133956.3133973
http://doi.acm.org/10.1145/1866307.1866328

[10] S. T. Haque, M. Wright, and S. Scielzo, “A study of user password strategy
for multiple accounts,” in Proceedings of the Third ACM Conference on Data and
Application Security and Privacy, ser. CODASPY ’13. New York, NY, USA: ACM,
2013, pp. 173–176. [Online]. Available: http://doi.acm.org/10.1145/2435349.2435373

[11] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L. Mazurek, L. Bauer, N. Christin,
and L. F. Cranor, “Encountering stronger password requirements: User attitudes and
behaviors,” in Proceedings of the Sixth Symposium on Usable Privacy and Security.
ACM, 2010, p. 2.

[12] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus of 70 million
passwords,” in Proceedings - IEEE Symposium on Security and Privacy, 2012, pp. 538–
552.

[13] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri, D. Kurilova,
M. L. Mazurek, W. Melicher, and R. Shay, “Measuring real-world accuracies
and biases in modeling password guessability,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, Aug. 2015, pp.
463–481. [Online]. Available: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/ur

[14] B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. F. Cranor, H. Dixon,
P. E. Naeini, H. Habib, N. Johnson, and W. Melicher, “Design and evaluation of a data-
driven password meter,” in CHI’17: 35th Annual ACM Conference on Human Factors
in Computing Systems. ACM, May 2017, pp. 3775–3786.

[15] A. D. Smith, P. Emmett, P. Newby, and K. Northstone, “A comparison of dietary pat-
terns derived by cluster and principal components analysis in a UK cohort of children,”
European journal of clinical nutrition, vol. 65, no. 10, p. 1102, 2011.

[16] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea, “Visualizing the hidden ac-
tivity of artificial neural networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 1, pp. 101–110, 2016.

[17] M. Aubry and B. C. Russell, “Understanding deep features with computer-generated
imagery,” arXiv e-prints, vol. abs/1506.01151, 2015.

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?”: Explaining the
predictions of any classifier,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM,
2016, pp. 1135–1144.

[19] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic Attribution for Deep Networks,”
in Proceedings of the 34th International Conference on Machine Learning - Volume 70.
JMLR.org, 2017, pp. 3319–3328.

[20] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards better understanding of
gradient-based attribution methods for Deep Neural Networks,” arXiv e-prints, vol.
cs.LG, p. arXiv:1711.06104, Nov. 2017.

36

http://doi.acm.org/10.1145/2435349.2435373
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ur
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ur

[21] K. Leino, S. Sen, A. Datta, M. Fredrikson, and L. Li, “Influence-Directed Explanations
for Deep Convolutional Networks,” arXiv e-prints, vol. cs.LG, p. arXiv:1802.03788, Feb.
2018.

[22] A. Karpathy, J. Johnson, and F. F. Li, “Visualizing and Understanding Recurrent
Networks,” arXiv e-prints, vol. abs/1506.02078, 2015.

[23] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu, “Understanding
Hidden Memories of Recurrent Neural Networks,” in 2017 IEEE Conference on Visual
Analytics Science and Technology (VAST), Oct. 2017, pp. 13–24.

[24] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “LSTMVis: A Tool for Visual
Analysis of Hidden State Dynamics in Recurrent Neural Networks,” IEEE Transactions
on Visualization and Computer Graphics, vol. 24, no. 1, pp. 667–676, Jan. 2018.

[25] J. Li, X. Chen, E. H. Hovy, and D. Jurafsky, “Visualizing and Understanding Neural
Models in NLP,” arXiv e-prints, vol. abs/1506.01066, 2015.

[26] K. Dhamdhere, M. Sundararajan, and Q. Yan, “How Important Is a Neuron?” arXiv
e-prints, vol. cs.LG, p. arXiv:1805.12233, May 2018.

[27] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On
Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance
Propagation,” PLOS ONE, vol. 10, no. 7, pp. 1–46, Jul. 2015.

[28] Y. Ding, Y. Liu, H. Luan, and M. Sun, “Visualizing and understanding neural ma-
chine translation,” in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1150–1159.

[29] L. Arras, G. Montavon, K.-R. Müller, and W. Samek, “Explaining recurrent neural
network predictions in sentimenft analysis,” arXiv preprint arXiv:1706.07206, 2017.

[30] J. Kauffmann, M. Esders, G. Montavon, W. Samek, and K.-R. Müller, “From Clustering
to Cluster Explanations via Neural Networks,” arXiv e-prints, vol. abs/1906.07633,
2019.

[31] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “Openpgp message
format,” 2007. [Online]. Available: https://tools.ietf.org/html/rfc4880

[32] J. Galbraith and R. Thayer, “The secure shell (ssh) public key file format,” 2006.
[Online]. Available: https://www.ietf.org/rfc/rfc4716.txt

[33] Off-the-Record Messaging, “Fingerprints,” 2016. [Online]. Available: https://otr.
cypherpunks.ca/help/fingerprint.php

[34] WhatsApp, “Whatsapp encryption overview: Technical white pa-
per,” April 2016. [Online]. Available: https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf

37

https://tools.ietf.org/html/rfc4880
https://www.ietf.org/rfc/rfc4716.txt
https://otr.cypherpunks.ca/help/fingerprint.php
https://otr.cypherpunks.ca/help/fingerprint.php
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

[35] Wickr, “What is the key verification feature?” 2016. [Online]. Available: https://wickr.
desk.com/customer/en/portal/articles/2342342-what-is-the-key-verification-feature-

[36] S. Nagao, “Avatars,” Oct 2016. [Online]. Available: https://peerio.zendesk.com/hc/
en-us/articles/202729949-Avatars

[37] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: A usability evaluation
of pgp 5.0,” in Proceedings of the 8th Conference on USENIX Security Symposium,
ser. SSYM’99, 1999. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251421.
1251435

[38] S. L. Garfinkel and R. C. Miller, “Johnny 2: A user test of key continuity
management with s/mime and outlook express,” in Proceedings of the 2005
Symposium on Usable Privacy and Security, ser. SOUPS ’05, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1073001.1073003

[39] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman, K. Xu, and M. Blaze, “Why
(special agent) johnny (still) can’t encrypt: A security analysis of the apco project 25
two-way radio system,” in Proceedings of the 20th USENIX Conference on Security, ser.
SEC’11, 2011. [Online]. Available: http://dl.acm.org/citation.cfm?id=2028067.2028071

[40] S. Ruoti, N. Kim, B. Burgon, T. van der Horst, and K. Seamons, “Confused johnny:
When automatic encryption leads to confusion and mistakes,” in Proceedings of the
Ninth Symposium on Usable Privacy and Security, ser. SOUPS ’13, 2013. [Online].
Available: http://doi.acm.org/10.1145/2501604.2501609

[41] S. Gaw, E. W. Felten, and P. Fernandez-Kelly, “Secrecy, flagging, and paranoia:
Adoption criteria in encrypted email,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’06, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1124772.1124862

[42] R. Stedman, K. Yoshida, and I. Goldberg, “A user study of off-the-record messaging,”
in Proceedings of the 4th Symposium on Usable Privacy and Security, ser. SOUPS ’08,
2008. [Online]. Available: http://doi.acm.org/10.1145/1408664.1408678

[43] S. Vaudenay, “Secure communications over insecure channels based on short
authenticated strings,” in Proceedings of the 25th Annual International Conference
on Advances in Cryptology, ser. CRYPTO’05, 2005. [Online]. Available: http:
//dx.doi.org/10.1007/11535218 19

[44] A. Perrig and D. Song, “Hash visualization: A new technique to improve real-world
security,” 1999. [Online]. Available: https://users.ece.cmu.edu/∼adrian/projects/
validation/

[45] OpenSSH, “Openssh 5.1 release announcement,” 2008. [Online]. Available: https:
//www.openssh.com/txt/release-5.1

[46] B. D. v. d. Ehe, “Unicornify! how does it work?” 2012. [Online]. Available:
https://unicornify.appspot.com/making-of

38

https://wickr.desk.com/customer/en/portal/articles/2342342-what-is-the-key-verification-feature-
https://wickr.desk.com/customer/en/portal/articles/2342342-what-is-the-key-verification-feature-
https://peerio.zendesk.com/hc/en-us/articles/202729949-Avatars
https://peerio.zendesk.com/hc/en-us/articles/202729949-Avatars
http://dl.acm.org/citation.cfm?id=1251421.1251435
http://dl.acm.org/citation.cfm?id=1251421.1251435
http://doi.acm.org/10.1145/1073001.1073003
http://dl.acm.org/citation.cfm?id=2028067.2028071
http://doi.acm.org/10.1145/2501604.2501609
http://doi.acm.org/10.1145/1124772.1124862
http://doi.acm.org/10.1145/1408664.1408678
http://dx.doi.org/10.1007/11535218_19
http://dx.doi.org/10.1007/11535218_19
https://users.ece.cmu.edu/~adrian/projects/validation/
https://users.ece.cmu.edu/~adrian/projects/validation/
https://www.openssh.com/txt/release-5.1
https://www.openssh.com/txt/release-5.1
https://unicornify.appspot.com/making-of

[47] C. Davis, “Robohash,” 2016. [Online]. Available: https://robohash.org/

[48] M. Farb, Y.-H. Lin, T. H.-J. Kim, J. McCune, and A. Perrig, “Safeslinger: Easy-to-use
and secure public-key exchange,” in Proceedings of the 19th Annual International
Conference on Mobile Computing & Networking, ser. MobiCom ’13, 2013. [Online].
Available: http://doi.acm.org/10.1145/2500423.2500428

[49] M. Shirvanian and N. Saxena, “On the security and usability of crypto phones,”
in Proceedings of the 31st Annual Computer Security Applications Conference, ser.
ACSAC 2015, 2015. [Online]. Available: http://doi.acm.org/10.1145/2818000.2818007

[50] M. Wu, R. C. Miller, and G. Little, “Web wallet: Preventing phishing
attacks by revealing user intentions,” in Proceedings of the Second Symposium on
Usable Privacy and Security, ser. SOUPS ’06, 2006. [Online]. Available: http:
//doi.acm.org/10.1145/1143120.1143133

[51] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith,
“Sok: Secure messaging,” in Proceedings of the 2015 IEEE Symposium on Security and
Privacy, ser. SP ’15, 2015. [Online]. Available: http://dx.doi.org/10.1109/SP.2015.22

[52] R. Kainda, I. Flechais, and A. W. Roscoe, “Usability and security of out-
of-band channels in secure device pairing protocols,” in Proceedings of the 5th
Symposium on Usable Privacy and Security, ser. SOUPS ’09, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1572532.1572547

[53] A. Kobsa, R. Sonawalla, G. Tsudik, E. Uzun, and Y. Wang, “Serial hook-ups:
A comparative usability study of secure device pairing methods,” in Proceedings of
the 5th Symposium on Usable Privacy and Security, ser. SOUPS ’09, 2009. [Online].
Available: http://doi.acm.org/10.1145/1572532.1572546

[54] A. Kumar, N. Saxena, G. Tsudik, and E. Uzun, “Caveat eptor: A comparative
study of secure device pairing methods,” in 2009 IEEE International Conference
on Pervasive Computing and Communications, 2009. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4912753

[55] H.-C. Hsiao, Y.-H. Lin, A. Studer, C. Studer, K.-H. Wang, H. Kikuchi, A. Perrig,
H.-M. Sun, and B.-Y. Yang, “A study of user-friendly hash comparison schemes,”
in 2009 Annual Computer Security Applications Conference, 2009. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380523

[56] S. Dechand, D. Schürmann, K. Busse, Y. Acar, S. Fahl, and M. Smith, “An empirical
study of textual key-fingerprint representations,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/dechand

[57] Plasmoid, “Fuzzy fingerprints: Attacking vulnerabilities in the human brain,” 2003.
[Online]. Available: https://www.thc.org/papers/ffp.pdf

39

https://robohash.org/
http://doi.acm.org/10.1145/2500423.2500428
http://doi.acm.org/10.1145/2818000.2818007
http://doi.acm.org/10.1145/1143120.1143133
http://doi.acm.org/10.1145/1143120.1143133
http://dx.doi.org/10.1109/SP.2015.22
http://doi.acm.org/10.1145/1572532.1572547
http://doi.acm.org/10.1145/1572532.1572546
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4912753
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4912753
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5380523
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
https://www.thc.org/papers/ffp.pdf

[58] D. Loss, T. Limmer, and A. von Gernler, “The drunken bishop: An analysis
of the openssh fingerprint visualization algorithm,” 2009. [Online]. Available:
http://dirk-loss.de/sshvis/drunken bishop.pdf

[59] M. Stevens, P. Karpman, and T. Peyrin, “Freestart collision for full sha-1,” in
Proceedings of the 35th Annual International Conference on Advances in Cryptology,
ser. EUROCRYPT 2016, 2016. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-49890-3 18

[60] National Institute of Standards and Technology (NIST), “SP 800-63B: Digital identity
guidelines: Authentication and lifecycle management,” https://doi.org/10.6028/NIST.
SP.800-63-3, June 2017, updated Dec 2017.

[61] T. Hunt, “Pwned Passwords API,” 2019. [Online]. Available: https://haveibeenpwned.
com/Passwords

[62] H. Habib, J. Colnago, W. Melicher, B. Ur, S. M. Segreti, L. Bauer, N. Christin, and
L. F. Cranor, “Password Creation in the Presence of Blacklists,” in Workshop on Usable
Security. Reston, VA: Internet Society, 2017.

[63] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin,
L. F. Cranor, and S. Egelman, “Of passwords and people: Measuring the effect of
password-composition policies,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011, pp.
2595–2604. [Online]. Available: http://doi.acm.org/10.1145/1978942.1979321

[64] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin,
L. F. Cranor, and J. Lopez, “Guess again (and again and again): Measuring password
strength by simulating password-cracking algorithms,” in 2012 IEEE Symposium on
Security and Privacy, May 2012, pp. 523–537.

[65] R. Shay, S. Komanduri, A. L. Durity, P. S. Huh, M. L. Mazurek, S. M. Segreti, B. Ur,
L. Bauer, N. Christin, and L. F. Cranor, “Designing password policies for strength
and usability,” ACM Trans. Inf. Syst. Secur., vol. 18, no. 4, pp. 13:1–13:34, May 2016.
[Online]. Available: http://doi.acm.org/10.1145/2891411

[66] ——, “Can long passwords be secure and usable?” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’14. New York, NY,
USA: ACM, 2014, pp. 2927–2936. [Online]. Available: http://doi.acm.org/10.1145/
2556288.2557377

[67] W. Melicher, D. Kurilova, S. M. Segreti, P. Kalvani, R. Shay, B. Ur, L. Bauer,
N. Christin, L. F. Cranor, and M. L. Mazurek, “Usability and security of text
passwords on mobile devices,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, ser. CHI ’16. New York, NY, USA: ACM, 2016, pp.
527–539. [Online]. Available: http://doi.acm.org/10.1145/2858036.2858384

40

http://dirk-loss.de/sshvis/drunken_bishop.pdf
http://dx.doi.org/10.1007/978-3-662-49890-3_18
http://dx.doi.org/10.1007/978-3-662-49890-3_18
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63-3
https://haveibeenpwned.com/Passwords
https://haveibeenpwned.com/Passwords
http://doi.acm.org/10.1145/1978942.1979321
http://doi.acm.org/10.1145/2891411
http://doi.acm.org/10.1145/2556288.2557377
http://doi.acm.org/10.1145/2556288.2557377
http://doi.acm.org/10.1145/2858036.2858384

[68] National Institute of Standards and Technology (NIST), “SP 800-63 Ver. 1.0: Electronic
authentication guideline,” https://csrc.nist.gov/publications/detail/sp/800-63/ver-10/
archive/2004-06-30, June 2004.

[69] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F. Cranor,
P. G. Kelley, R. Shay, and B. Ur, “Measuring password guessability for an entire
university,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp.
173–186. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516726

[70] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive Exploration of Neural Machine
Translation Architectures,” ArXiv e-prints, Mar. 2017.

[71] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised Deep Embedding for Clustering
Analysis,” arXiv e-prints, vol. abs/1511.06335, 2015.

[72] G. Montavon, W. Samek, and K.-R. Müller, “Methods for Interpreting and Understand-
ing Deep Neural Networks,” arXiv e-prints, vol. abs/1706.07979, 2017.

41

https://csrc.nist.gov/publications/detail/sp/800-63/ver-10/archive/2004-06-30
https://csrc.nist.gov/publications/detail/sp/800-63/ver-10/archive/2004-06-30
http://doi.acm.org/10.1145/2508859.2516726

	Introduction
	Thesis themes
	Background and related work
	Passwords
	Password reuse
	Measuring resistance to guessing attacks
	Password-creation guidance

	Interpretable explanations for text-input black-box models
	Dimensionality reduction
	Approximate complex model with simpler, interpretable model
	Relevance of input features in neural network predictions

	Public-key fingerprints
	Fingerprint applications
	Usability of fingerprints
	Entropy as a security metric

	Previous work
	Can unicorns help users compare crypto key fingerprints?
	Research goals
	Methodology
	Results

	Ongoing and future work
	Minimum-password-strength requirements vs. blacklists
	Modeling password guessability with autoencoder-derived heuristic features

	Thesis outline
	Timeline

