Can Unicorns Help Users Compare Crypto Key
Fingerprints?

Joshua Tan, Lujo Bauer, Joseph Bonneau’,
Lorrie Faith Cranor, Jeremy Thomas, Blase Ur*

Carnegie Mellon University, {jstan, Ibauer, lorrie, thomasjm} @cmu.edu
1 Stanford University, jbonneau@cs.stanford.edu
* University of Chicago, blase @uchicago.edu

ABSTRACT

Many authentication schemes ask users to manually compare
compact representations of cryptographic keys, known as fin-
gerprints. If the fingerprints do not match, that may signal a
man-in-the-middle attack. An adversary performing an attack
may use a fingerprint that is similar to the target fingerprint, but
not an exact match, to try to fool inattentive users. Fingerprint
representations should thus be both usable and secure.

We tested the usability and security of eight fingerprint repre-
sentations under different configurations. In a 661-participant
between-subjects experiment, participants compared finger-
prints under realistic conditions and were subjected to a sim-
ulated attack. The best configuration allowed attacks to suc-
ceed 6% of the time; the worst 72%. We find the seemingly
effective compare-and-select approach performs poorly for
key fingerprints and that graphical fingerprint representations,
while intuitive and fast, vary in performance. We identify
some fingerprint representations as particularly promising.

ACM Classification Keywords
K.6.5 Security and Protection: Authentication; H.5.2 User
Interfaces: Evaluation/methodology

Author Keywords
usability; key fingerprints; authentication; secure messaging

INTRODUCTION

To protect the privacy of communications like email and in-
stant messaging, users can encrypt messages using public-key
encryption. For Alice to send a message to Bob that only Bob
can read, she needs to encrypt the message with Bob’s public
key. Bob will use his private key to decrypt the message.

While this method of securing communication is believed to
be technically sound, it hinges on Alice knowing Bob’s public

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI 2017 May 06-11, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4655-9/17/05.

DOL: http://dx.doi.org/10.1145/3025453.3025733

key. To learn Bob’s key, Alice would typically look it up
on a web site (e.g., a public key server) that publishes such
information. Unfortunately, an attacker seeking to intercept
Alice’s communications to Bob might try to add his own key
to the key server under Bob’s name. When trying to find
Bob’s public key, Alice would then unwittingly download the
attacker’s key. Any messages she composed for Bob would
then be readable by the attacker, and not by Bob.

A more reliable method would be for Bob to deliver his public
key to Alice in person. Because public keys are long strings
of arbitrary bits, this approach is unfortunately unwieldy and
impractical. A common alternative is for Bob to give Alice
a fingerprint of his key, which is a short digest (hash) of the
key. Alice then manually compares (e.g., looks at them side
by side) the fingerprint received from Bob to the fingerprint
computed from the key she downloaded from the key server.
Fingerprints are by design long enough for it to be exceedingly
unlikely that two different keys will have the same fingerprint,
yet short enough for manual comparison to be feasible.

Fingerprint verification is only useful, however, if Alice is able
to determine easily and successfully whether the fingerprint
she obtained from Bob matches the one she computed. If
Alice is only comparing the first part of the two fingerprints,
for example, this opens the door to attackers who try to create
a public key whose fingerprint will be similar to Bob’s key’s
fingerprint, in the hope that Alice’s (cursory) examination will
not distinguish it from the real fingerprint.

Fingerprints can be represented in many ways, which may
impact the efficiency and accuracy with which users compare
them. Besides the commonly used hexadecimal format [2, 8],
other representations used in practice include ASCII art [22],
numbers [34], pronouncable strings [13], and avatars [20]. Ad-
ditional representations have been proposed, including abstract
art [23], sentences [1], snowflakes [18], and fractal flames [25].

In this paper we report on the results of a 661-participant on-
line study through which we compare the usability and efficacy
of a range of fingerprint representations and configurations.
We test eight different representations and examine how likely
users are to notice fingerprint mismatches caused by an at-
tacker who creates public keys whose fingerprints are similar
to the authentic key’s fingerprint. We include fingerprint rep-

http://dx.doi.org/10.1145/3025453.3025733

resentations used in practice (e.g., hexadecimal strings, ASCIL
art) as well as ones hypothesized to be good alternatives (e.g.,
randomly generated images of unicorns). We also examine
different approaches used to compare fingerprints (seeing two
fingerprints side by side versus selecting the correct fingerprint
from a list) and the effect on security against differently pow-
erful attackers. We pay special attention to our experiment’s
realism, simulating time pressure that users may feel in prac-
tice when performing security tasks, accounting for the fact
that attacks are rare rather than the typical case, and simulating
other practical challenges (e.g., comparing a fingerprint on a
business card to one on a screen).

Our results include findings important for designing systems
that involve comparing fingerprints. We find that graphical rep-
resentations, thought promising [11], have mixed success. Al-
though all allowed quick comparisons, some were much more
susceptible to attack than more standard representations. We
also find that the compare-and-select method of comparing fin-
gerprints resulted in many users failing to detect mismatches,
to the point where its use for fingerprint comparison should
be strongly discouraged. Echoing prior work [6], we find that
non-hexadecimal textual representations have promise, espe-
cially for usability. The traditional hexadecimal representation,
however, overall fares surprisingly well.

These findings lead to a set of suggestions for when a finger-
print representation may be appropriate. When security is
paramount, none of the representations tested seem adequate.
When the risk and impact of attack is low but usability is
paramount, visual representations excel. For casual use, when
security and usability need to be balanced, textual representa-
tions, including hexadecimal, seem to be the most appropriate.

BACKGROUND AND RELATED WORK

In this section we discuss the uses of fingerprints and prior
attempts to improve their usability. We also explain how to
use entropy to quantify the security afforded by fingerprint
representations. Finally, we relate attacker strengths to real-
world costs for performing brute-force attacks on fingerprints.

Fingerprint Applications

One type of attack in communication systems is a man-in-the-
middle (MitM) attack, in which an attacker inserts himself
or herself between two communicating parties in such a way
that neither party is aware of the attacker. Once inserted, the
attacker can eavesdrop or actively manipulate communications.
Fingerprint comparisons enable a user to detect MitM attacks.

Well-known applications that make use of fingerprints in-
clude GnuPG [2], a tool for encrypting communications, and
OpenSSH [8], commonly used for remote access to servers.
Off-the-Record (OTR) Messaging applications provide multi-
ple ways to authenticate message recipients, including finger-
print verification [21]. Many popular secure chat smartphone
apps also use fingerprints, usually in a layered approach in
which fingerprint comparison is optional [34,36].

A variety of fingerprint representations and formats are used,
the majority of which are textual. Examples of textual repre-
sentations used in real systems are shown in Table 1. Graphical

GnuPG 3A70 F9A® 4ECD B5D7 8A89
D32C EDA® A352 66E2 C53D
ef:6d:bb:4c:25:3a:6d:£8:79:d3:a7:90:db:c9:
b4:25
bubblebabble xucef-masiv-zihyl-bicyr-zalot-cevyt-lusob-
negul-biros-zuhal-cixex
OTR 4206EA15 1E029807 C8BA9366 B972A136 (6033804
WhatsApp 54040 65258 71972 73974
10879 55897 71430 75600
25372 60226 27738 71523

OpenSSH

Table 1: Examples of textual fingerprint representations used
in actual applications.

representations have seen limited use; examples include Pee-
rio [20], which uses an avatar representation, and OpenSSH
Visual Host Key, which resembles ASCII art (Figure 2).

Usability of Fingerprints

Public key cryptography has long had usability and adoption
issues [3,9, 10,26, 35]. Fingerprints have been part of the
problem. In a user study on OTR messaging, participants
were confused by fingerprints and struggled to verify them
correctly [28]. In order to make fingerprint verification more
usable, researchers have explored a variety of approaches.

One way to make comparison easier is to shorten fingerprints.
This approach is used in Short Authentication Strings (SAS).
SAS can provide reasonable security using only a 15-bit
string [33], though they are primarily useful in synchronous en-
vironments. Alternatively, the computational security of small
fingerprints can be increased by slowing down the hashing
algorithm using a stretching function. In our study, we focus
on fingerprint comparisons that apply to public-key fingerprint
verification, which is traditionally asynchronous.

Adding structure to a fingerprint representation may make it
easier to compare. Textual fingerprint representations can be
separated into smaller chunks. Representing fingerprints as
pronounceable words or sentences may also facilitate compar-
ison. For graphical representations, structured images resem-
bling abstract art have been suggested for improving usability.
These include Random Art [23] and OpenSSH Visual Host
Key, which was inspired by Random Art [22]. Another way to
add structure is to represent fingerprints as avatars, such as uni-
corns [32] or robots [5]. In our study, we examine textual and
graphical representations with varying degrees of structure.

Different comparison modes have also been proposed, primar-
ily for SAS-based device pairing or synchronous authentica-
tion [7,27]. These include compare-and-confirm (compare
two strings and indicate if they match), compare-and-select
(compare one string to a set of others and select the matching
option), and copy-and-enter (copy a string from one device to
another and let the device itself perform the check). Compare-
and-select has also been used for anti-phishing tools that ask
users to select the website they want to visit from a list, rather
than ask for a yes/no answer to whether users would like to
proceed to a given website [37]. In our study, we test both
compare-and-confirm and compare-and-select. In particular,
we explore compare-and-select due to its potential benefits for
inattentive users. Prior work has postulated that compare-and-

select may help prevent users from “verifying” fingerprints
without actually comparing them [7,31].

A number of usability studies on device pairing have explored
representations and comparison modes similar to those we
test [14, 16, 17]. They considered representations such as num-
bers, images of visual patterns, and phrases, as well as various
comparison modes. In each of these studies, participants per-
formed comparison tasks similar to ours in a lab setting. In
some cases, participants were also subjected to a simulated
MitM attack [14, 17]. These studies had mixed findings; for
example, Kainda et al. conclude that compare-and-confirm
and compare-and-select should not be used because it is sub-
ject to security failures [14], while Kumar et al. recommend
that compare-and-confirm with numbers be used due to its low
error rate and comparison speed [17]. Although these studies
were useful for informing our selection of fingerprint represen-
tations and comparison modes, a number of differences limit
the extent to which their findings might extend to verifying
public key fingerprints. These differences include the size of
fingerprints tested (15-20 bits, compared to at least 128 bits
in our study) and the methodology used (lab studies are often
too small to perform statistical testing).

In a 400-participant online study, Hsiao et al. examined the
speed and accuracy of fingerprint comparisons under different
representations [11]. In contrast to lab studies, their methodol-
ogy enabled statistical testing. However, with one exception,
all fingerprints were sized between 22-28 bits, so it is unclear
how many of their findings might translate to our setting. The
exception to this caveat is that they tested Random Art [23],
which can encode bit sizes comparable to those we explore.
They found Random Art performed well in both accuracy
and speed, recommending its use for color-display devices
with sufficient computational power. We examine Vash, an
open-source implementation of abstract art fingerprints [4, 30].
Although the two representations are similar, Hsiao et al.’s
findings for Random Art may not extend to the attacks we
consider; the similar-looking pairs they used were selected
from only 2000 Random Art images, whereas we consider
attackers who can generate 2%° candidate images.

Other than recent work by Dechand et al. [6], scant research
has tested representations suitable for key fingerprints. That
study involved a large-scale, within-subjects experiment on
Mechanical Turk (MTurk) in which participants compared fin-
gerprints displayed in different textual representations, includ-
ing hexadecimal, numbers, words, and sentences. They mea-
sured comparison speed and accuracy, and they also recorded
whether participants correctly compared fingerprints for mul-
tiple simulated 280 attacks. They found that hexadecimal
performed significantly worse than numbers and sentences in
both attack detection rates and usability ratings. In addition,
they found that sentences had a significantly higher attack
detection rate than numbers, while also being rated as more
usable.

Our work shares many similarities with Dechand et al.’s
study [6], particularly in the textual representations tested.
Similar to their study, we also subject participants to simulated
attacks for textual representations to determine the usability

and security of those representations. Unfortunately, direct
comparison of our work to theirs is difficult due to parameter
differences in the textual representations we test, in partic-
ular the chosen security level for fingerprints.! The other
primary differences between the previous study and ours are:
we evaluate fingerprint comparisons under realistic conditions
of habituation and distraction using a between-subjects de-
sign; we explore graphical representations; we perform an
initial investigation on compare-and-select for cryptographic
key fingerprints; and we test additional attacker strengths.

Entropy as a Security Metric

Entropy can be used to measure the computational security
afforded by different fingerprint representations. If users com-
pare fingerprints fully, then the entropy of a fingerprint rep-
resentation quantifies the average work needed to find a key
whose fingerprint collides with the target fingerprint. If users
do not compare fingerprints completely, but only compare
certain aspects, then an intelligent attacker may attempt to
only match the aspects he expects will be actually compared.
This type of attack, in which the adversary attempts to find a
visually similar fingerprint to the target fingerprint, has been
explored for both the hexadecimal and graphical fingerprints
used in OpenSSH [19,24]. More recently, the previously men-
tioned study by Dechand et al. investigated users’ ability to
detect such attacks for different textual representations [6].

The reduction in entropy of the original representation (af-
ter fixing the matched aspects) can be used to quantify the
work an attacker must spend to produce a key whose finger-
print matches specific aspects of the target fingerprint. This
approach to quantifying attacker work has the added benefit
of being independent of the particular binary encoding used
for a fingerprint. A 257 attack corresponds to an attacker that
generates 2% keys, computes the fingerprint for each, and then
(manually or programmatically) selects the key whose finger-
print maximizes similarity according to some metric. Stevens
et al. estimate the cost of renting CPU/GPU time from EC2
to find a SHA-1 collision, which requires resouces similar to
those to perform a 2% attack on fingerprints. They estimate
this cost to be between 75K and 120K USD, which they note
is within the budget of criminal organizations [29].

METHODOLOGY

We conducted a between-subjects experiment to evaluate and
compare the usability and security of fingerprint represen-
tations and configurations. We recruited participants from
MTurk in August 2016. We required participants be 18 years
or older and live in the United States. Our protocol was ap-
proved by our university’s IRB.

We advertised the study as a “role-playing activity involving
technology and communication in the workplace” that would
take about 20 minutes. We compensated participants $3, with
the opportunity to earn a $1 bonus. As our activity was not
designed for use on tablets or smartphones, we asked that
participants use a desktop or laptop computer. Participants

I'We began our study prior to publication of their work, limiting our
ability to choose parameters consistent with their study.

Pringg
Pr -dea
¥ Solution

printidea
sotutions

Figure 1: Screenshot of the task. This example is the compare-
and-confirm, simultaneously visible, hexadecimal condition.

were randomly assigned to a condition, which determined the
fingerprint representation and configuration they saw.

We asked participants to imagine they worked as an accountant
at a company that was updating its employee database. To
perform this update, participants had to retrieve the social
security numbers (SSNs) for 30 employees and enter them
into a database. We chose SSNs to motivate the need for
secure communication. In the U.S., SSNs are highly sensitive
because knowing an individual’s SSN can enable identity theft
and have other financial ramifications. Our activity web page
divided the browser window into two sections that mimicked
the appearance of a computer screen and a desk (Figure 1). The
computer screen section displayed a spreadsheet-like database
where participants would need to fill in missing SSN details
for employees. Several business cards were sitting on the desk.
A stopwatch and information about the participant’s progress
completing the task appeared in the top right corner.

We provided the instructions for the activity via an interactive
tutorial. Participants could repeat the tutorial any number of
times until they were comfortable proceeding, and the on-
screen stopwatch did not begin until after the tutorial ended.

At the start of a task, a chat window appeared on the simulated
computer screen informing participants of an incoming mes-
sage from one of the 30 employees. To proceed, they had to
perform a security check. Shortly afterward, a dialog box was
displayed on the computer screen containing a fingerprint and
instructions to compare it to the fingerprint on the employee’s
business card, which appeared simultaneously on the desk.

For our baseline configuration, a security check involved com-
paring two fingerprints (one in the security check dialog box
and one on the business card) and pressing a button to indicate
if they were the same. We informed participants that this check
was needed to ensure a secure chat session and avoid potential
eavesdroppers. Depending on which fingerprint representa-
tion was shown, we provided guidance on what differences
participants should look for when comparing fingerprints.

If the participant indicated that the fingerprints matched, the
chat window displayed a message from the employee with her
SSN. The participant was instructed to type the SSN into the
database. If the participant instead indicated that fingerprints

did not match, the chat message instructed the participant
to instead enter “ERROR” in the database. Each participant
repeated this task for 30 employees.

We instrumented our activity to record participants’ database
entries, security-task decisions, and detailed timing informa-
tion. We also recorded their browser user agent strings to
determine whether participants used a tablet or smartphone.
For one condition in which users had to toggle between two
views, we recorded the number and timing of toggles.

Afterwards, participants filled out a survey. In this survey, we
told participants whether they had missed our attack and asked
them to explain why they thought they missed or detected
that attack. To aid in memory, we showed the fingerprint pair
corresponding to the attack alongside these questions. We
asked participants to describe their strategy for comparing
fingerprints, respond on a Likert scale to statements about the
fingerprints they saw, and provide general demographic data.

Security Task Design Considerations

Security tasks are rarely performed for their own sake. Finger-
print comparisons are secondary to a primary purpose, such as
communicating with someone. Combined with the pressures
and stresses of everyday life, this state of affairs often results in
users performing security tasks while distracted or otherwise
not fully attentive. In addition, few users will have previously
been the target of a MitM attack and might have little reason
to believe they would become such a target. Users asked to
compare fingerprints might only encounter mismatching fin-
gerprints due to device misconfiguration, the acquisition of a
new device, or security software re-installation. Many design
decisions for our activity reflect these real-world factors.

To increase distraction and stress, we incentivized participants
to perform the task both quickly and correctly by informing
them that the “15% fastest participants with the fewest mis-
takes” would receive an additional $1 bonus. We considered
a mistake to be entering an incorrect SSN into the database
or failing the security check for an employee. The interface
contained both a persistent reminder of this bonus and a timer
showing the elapsed time, a target time participants should
try to beat, and the number of employees remaining. We also
highlighted this box in the tutorial. To avoid cases where par-
ticipants felt under-pressured due to exceeding the target time,
we noted that beating the target time did not guarantee the
bonus as future participants could lower or raise it.

We expected most participants would have little to no expe-
rience comparing key fingerprints and thus would lack the
expectations typically held by users who frequently compare
fingerprints. In an effort to ingrain these expectations quickly,
we sacrificed realism with respect to the role-playing activity.
To habituate participants to benign situations, 28 of the 30
comparison tasks involved matching fingerprints. One finger-
print comparison task involved obviously different fingerprints,
reflecting what would commonly be seen by users in benign
situations (e.g., misconfigurations). This task was shown in a
randomly determined position between the second and fifth
pairs, inclusive. We also used this task to filter out participants
who mindlessly clicked through the entire activity.

Threat Model and Simulated Attack

In our threat model, an adversary attempts a MitM attack
on a specific user in the context of a fingerprint comparison
task. We assume preimage attacks on the user’s fingerprint
are infeasible. Instead, an adversary attempts to present a
key whose fingerprint is similar to the target user’s fingerprint.
We assume the adversary has finite resources, limiting how
similar the attack fingerprint can be to the target. Participants
were shown a single simulated attack according to this threat
model. The comparison task in which the attack appeared was
randomly chosen from between the 25th and 29th pairs, inclu-
sive. To minimize bias, we generated three attack instances
for each configuration and randomly selected one of these
three for each participant. Since we tested attack strengths
requiring computational resources not available to us, we sim-
ulated these attacks; we generated a 2%° attack by creating a
version of the target fingerprint whose similarity was such that
it would take 2% bruteforce attempts on average to produce.

Applications can optionally use key stretching to increase re-
sistance to brute-force attacks. WhatsApp implements this
approach using iterated hashing [34]. The simulated attacks in
our study assume that hash strengthening techniques are not
applied. Thus, our attack detection results directly apply to
applications such as GnuPG and OpenSSH, which do not cur-
rently implement such defenses. However, the attack strengths
we test can be translated to applications that do use hash
strengthening. Specifically, if a fingerprint scheme employs
hash strengthening to require an additional 22° work per gener-
ated fingerprint (reasonable even on mobile devices), then our
results for 290 attacks on fingerprints without strengthening
translate to 289 attacks on fingerprints with strengthening.

Experimental Factors

Representations

For textual representations, we chose to target a fingerprint
security level of 160 bits. This is the same fingerprint secu-
rity provided by current implementations of GnuPG, which
uses SHA-1 for its hash function. Where applicable, textual
representations were chunked in groups of four, with chunks
separated by spaces. This chunk size performed well in prior
work [6]. For our graphical representations, we evaluate the
representation implementation in its original form, leaving the
fingerprint security as is. Table 2 demonstrates our textual
representations and Figure 2 our graphical representations.
As we introduce the representations, we note the number of
bits representing the space of possibilities that can be gener-
ated using that representation with those parameters. For all
representations, both textual and graphical, the number of pos-
sibilities that a human can distinguish can only be determined
empirically, which is implicit in the rate at which participants
in our study detect attacks.

For textual representations, we tested hexadecimal (uppercase
and lowercase), alternating vowels/consonants, words, num-
bers, and sentences. Hexadecimal was 40 characters long (160
bits), numbers was 48 digits long (159.5 bits), alternating was
48 characters long (161.1 bits), and words was 16 words long
(155.7 bits). We selected words from Ogden’s Basic English

BAAA 9AE6 7B8B 0D41 BD83

O5E7 5209 8EDF 1058 41F6
bunu difu tura wefi wiwe hage
tano haco gevu cori qife nufi
Words learning equal education bent
collar religion new shelf
angle table train sad

keep meal thing punishment

Hexadecimal

Alt vow./cons.

Numbers 7748 5689 7453 6977 5604 5939
2765 8791 5022 4957 3805 0309
Sentences The basket ends your right cat on his linen.

Her range repeats her nerve.
The smile tells secretly.
My clean cake pulls your waiting pocket.

Table 2: Textual fingerprint representations used for experi-
ments. For hexadecimal, we tested both uppercase and lower-
case variations.

(b) Vash

(a) OpenSSH Visual (¢) Unicorn

Host Key

Figure 2: Visual fingerprint representations.

word list.2 For sentences, we used an implementation based
on a deterministic sentence generator [1] (159.8 bits). For this
representation, the average number of sentences is 3.6 (max: 7)
and the average length of the longest sentence is 9 words (max:
12). Each of hex, numbers, and alternating vowels/consonants
was equally spread over two lines. Words were spread over 4
lines. For the sentences representation, each sentence began
on a separate line, wrapping where necessary.

For graphical representations, we test OpenSSH Visual Host
Key (< 128 bits), Vash (= 5,438 bits), and unicorns [32]
(~ 2,854 bits).> Visual Host Key was included because it
is widely deployed in SSH software. Prior work explored
Random Art fingerprints [23], of which Vash is an open-source
implementation. We included unicorns to test fingerprints that
use avatar-like representations. We limited consideration to
those representations whose entropy was large enough for use
as cryptographic fingerprints in asynchronous settings (i.e.,
at least 128 bits). Unicorn fingerprints were generated by a
program in which unicorn attributes were set according to
numbers drawn from a pseudorandom number generator. The
key to be hashed served as the seed to the generator. For Vash
fingerprints, which can viewed abstractly as a graph, a similar
process was used to determine graph node types and properties,
which uniquely determine the fingerprint appearance.

Zhttp://ogden.basic-english.org/words.html

3Given the computational difficulty of an exact calculation, for our
graphical representations we roughly estimate security.

Secure Chat Client has received a message from Freddy Jones. Please
select the fingerprint that matches the one shown on the business card
(or select "Not Shown," if none match).

47 2A CC 4F BD 93 4C 3E 5E 4B
7B 8E FO EC 08 C2 44 2F B6 57

F0 74 3C 74 OF F3 8A A4 23 36
BD 00 85 A0 OF CA 0C 90 64 6C

OE 9E 17 31 1E 50 8C C3 BE DC
3573 47 6B 58 71 EC 78 5E 5A

Not shown

Continue

Figure 3: Security task dialog for participants in the compare-
and-select, hexadecimal condition.

For all representations, we allowed the fingerprint to take
up a maximum of 50% of the card, horizontal or vertical.
For sentences, this required formatting the fingerprint using
a slightly smaller font size than for the other textual formats.
For textual representations, we advised participants that they
should ignore differences in font size or type. In addition, for
words and sentences, we informed participants that differences
in fingerprints due to misspelled words would not occur.

For each representation, we thus needed to pick the specific
aspects that would be matched and ensure that the reduction
in entropy matched the assumed attacker strength. Our overall
strategy was to match the aspects we expected users would
focus on during comparisons. For textual representations,
we primarily matched the beginning and end of lines. For
graphical representations, we mainly attempted to match “big
picture” elements, such as overall pattern and color. For Vash,
we matched node types up to a certain depth. For unicorns, we
chose to roughly match many aspects, such as background hue
and horn length. Images of each attack used in our experiment
are included as supplementary material.

Comparison Mode

We tested both compare-and-confirm and compare-and-select,
as previously described. While compare-and-confirm is the tra-
ditional method of fingerprint comparison, we were interested
in the performance of compare-and-select, given its potential
benefits for inattentive users. An example of compare-and-
select is shown in Figure 3. Our implementation is similar to
that used in SafeSlinger [7]; three fingerprints are shown in a
random order, with two fingerprints randomly generated and
one fingerprint corresponding to the received fingerprint.

Visibility Mode

In most cases, participants tasked with comparing fingerprints
are able to see both fingerprints simultaneously. For example,
to compare a fingerprint on a business card to one on a com-
puter screen, the user can simply hold the business card up to
the screen to place the fingerprints side-by-side. However, in
certain use cases, it may not be possible or easy to view both
fingerprints simultaneously in order to compare. As an exam-
ple, many versions of Android do not have any easy way to
view two applications in a split-screen view. In this case, if the
user needs to compare fingerprints shown in two applications
(say, a fingerprint shown in a secure chat app and one shown
on a website), the user will need to toggle back and forth in
order to compare.

We tested situations in which fingerprints are both visible
simultaneously as well as situations in which the user must
toggle between them. We expected the need to toggle to affect
representations differently, as it may be easier to place certain
representations in short-term memory than others.

Attack Strength

We considered three different attack strengths: 240 260 and
280 These strengths correspond to the estimated capabilities
of an attack performed on commodity hardware, an attack
performed by a well-funded criminal organization, and an
attack performed by a state-sponsored actor.

Other Factors

We included two other experimental factors. For hexadecimal,
we tested the impact of letter case on performance. We were
interested in this because both types have been used for real
security applications (e.g., lowercase in OpenSSH and upper-
case in GnuPG). We also tested a variation of our activity in
which the target time-to-beat was doubled, from 540 seconds
to 1080 seconds. We tested this to provide insight into the
extent to which our results depend on the specific target time
that was used.

Experimental Conditions

Participants were randomly assigned to one of 17 experimental
conditions, which determined the specific fingerprint repre-
sentation, configuration, and attacker strength used for that
participant in the activity. Eight of our conditions assumed an
attacker strength of 20 and varied only according to finger-
print representation. To explore the effect of different attacker
strength assumptions, we tested four additional conditions:
240 attacks on uppercase hexadecimal and unicorns and 28
attacks on uppercase hexadecimal and Visual Host Key.

The four remaining experimental conditions were designed to
be compared with our baseline hexadecimal condition, namely
uppercase hex using the compare-and-confirm configuration in
which both fingerprints to be compared were simultaneously
visible, with an assumed attacker strength of 200 These condi-
tions varied from the baseline condition with respect to only
one factor: compare-and-select (comparison mode), toggle
(visibility mode), lowercase (hex letter case), and twice the
target time-to-beat.

We performed some modifications to test fingerprint compar-
isons under adverse conditions. In all conditions, fingerprints
were displayed in different font types and sizes. The business
cards were presented randomly tilted up to 10 degrees. For
the Vash and unicorn representations, we applied a random
gamma correction to the fingerprint shown on the computer
screen section in the range [0.8, 1.2], in order to simulate
the effect of an improperly calibrated display. For sentences,
we showed fingerprint pairs formatted such that line breaks
occurred in different places.

Statistical Analysis

We performed hypothesis tests for each metric we measured.
To test for significant effects with respect to the proportion
of security failures across conditions, we used Pearson’s chi-
squared test (for omnibus tests) and Fisher’s exact test (to

compare two conditions). To test for significant effects for
median comparison time, number of false positives, and Likert
ratings, we used the Kruskal-Wallis test (for omnibus tests) and
the Mann-Whitney-Wilcoxon test (to compare two conditions).
Given the large number of comparisons we made, we applied
the Holm-Bonferonni method and report corrected p-values.
All hypothesis tests used a significance value of o = 0.05.

Limitations

For each representation, we used an attack strategy to maxi-
mize similarity to the target fingerprint for particular aspects
(or in particular locations) of that fingerprint. Our goal was
to find the most effective attack given a fixed computational
budget. Nonetheless, it is unlikely that we selected the best
possible attack for each representation. Given this limitation,
we believe that our statistical power, sufficient to detect only
large differences in attack detection rate, is appropriate. Such
large differences, if they exist, may indicate weakness intrinsic
to a representation or configuration, not only in our attack
strategy.

Our participants were recruited from MTurk, which is not
representative of the general U.S. population; MTurk workers
have been found to be younger and better educated [15].

To habituate participants to benign security scenarios in a short
amount of time, we had to sacrifice some realism. However,
feedback from participants indicates that we achieved our goal
of recreating the types of conditions under which people would
likely perform fingerprint comparisons as a security task.

Since the primary goal of most MTurk users is to get paid, and
since we tied the bonus payment to participants’ performance
on the security tasks in our activity, the security tasks were
not secondary to some other task, as would be the case in the
real world. However, as previously explained, we believe we
captured the desirable characteristics intrinsic to security as a
secondary task.

Participants

A total of 677 participants completed our MTurk HIT. We
excluded 16: 3 participants used an Android or iOS device, 3
encountered technical issues, and 10 failed an attention check.
The average time spent on our HIT was 14 minutes and 12
seconds. We paid all workers that accepted our HIT.

Our reduced sample consisted of 661 participants. Participants’
ages ranged from 18 to 74 with an average of 33 years (0 =
9.7). Participants were 44% female and 55% male, with 1%
choosing not to specify. The two most common education
levels were a four-year college degree (35%) and some years of
college without finishing (27%). The most frequently reported
occupations were service (16%); business, management, or
financial (13%); and computer engineering or IT professional
(12%). We considered participants as technical if two out of
three of the following were true: they listed their occupation
type as computer engineering or IT professional, they knew
a programming language, or they indicated that people often
asked them for computer-related advice. According to this
definition, 18% of participants qualified as technical.

Frac. #
Condition Missed M(comp) Part.
hex, confirm, bothvis, 2460 0.21 8.03 42
num, confirm, bothvis, 2460 0.35 8.09 43
alt, confirm, bothvis, 2460 0.17 8.71 40
word, confirm, bothvis, 2460 0.14 6.70 42
sent, confirm, bothvis, 2460 0.06 7.57 33
ssh, confirm, bothvis, 2460 0.10 5.51 42
uni, confirm, bothvis, 2460 0.54 2.04 39
vash, confirm, bothvis, 2460 0.12 2.17 33
hex, select, bothvis, 2460 0.72 5.21 47
hex, confirm, toggle, 2460 0.30 9.79 40
vash, confirm, toggle, 22460 0.27 5.18 33
hex, confirm, bothvis, 2440 0.06 9.20 31
uni, confirm, bothvis, 2440 0.67 1.84 42
hex, confirm, bothvis, 2480 0.37 8.80 43
ssh, confirm, bothvis, 2480 0.25 4.10 32
hex, confirm, bothvis, 2460, 2x time 0.10 11.04 40
hex (low), confirm, bothvis, 2460 0.21 8.22 39

Table 3: Summary statistics by condition, including me-
dian comparison time (M(comp)), fraction of participants that
missed the attack, and total number of participants.

RESULTS

We first describe the performance of different fingerprint rep-
resentations. We then describe the effects of different ways
of eliciting confirmation (compare-and-confirm vs. compare-
and-select) and varying whether users could see the two fin-
gerprints they were comparing one at a time or both at once.
Finally, we discuss participants’ self-reported strategies for
comparing fingerprints. An overview of our results is provided
in Table 3.

Representations

Attack Detection Rate

The fraction of participants who failed to notice a simulated
290 attack varied significantly by condition (y> = 131.93,
df =16, p < .001). The best performing representation was
sentences, causing participants to miss just 6% of attacks; uni-
corns, surprisingly, were worst, with participants missing 54%
of attacks. Our baseline, the hexadecimal representation, was
roughly in the middle, with 21% of participants missing the
attack. The uppercase and lowercase variants of hexadecimal
had an attack success rate within 1% of each other. Figure 4
summarizes these results.

The difference in attack success rate between hexadecimal
(21%) and unicorns (54%) was borderline significant (p =
.052). Unicorns performed significantly worse than both Vash
(p = .003) and Visual Host Key (p < .001). In contrast to
related work by Dechand et al. [6], we did not observe any sta-
tistically significant differences in attack success rate between
textual representations.

We also tested whether participants who fell under our defini-
tion of technical were more successful at detecting attacks than
those who did not. Technical users were better at detecting
attacks (80% to 69%), but this difference was not statistically
significant after correction (p = .08). Similarly, for the three
representations in which we varied attack strength (Visual

hex, confirm, bothvis, 260
num, confirm, bothvis, 260
alt, confirm, bothvis, 2°60
word, confirm, bothvis, 2°60
sent, confirm, bothvis, 260
ssh, confirm, bothvis, 260

uni, confirm, bothvis, 260

vash, confirm, bothvis, 260 Attack ID
[i
hex, select, bothvis, 2160 | P
s

hex, confirm, toggle, 2"60
vash, confirm, toggle, 260
hex, confirm, bothvis, 2A40
uni, confirm, bothvis, 2A40
hex, confirm, bothvis, 2A80
ssh, confirm, bothvis, 2A80

hex, confirm, bothvis, 2760, 2x time

hex (low), confirm, bothvis, 2"60

0.

o

0.2 0.4 0.6
Fraction that Missed Attack

Figure 4: Fraction of participants in each condition that missed
the attack, grouped by condition and attack instance. The
attack IDs correspond to three different attacks we generated
for each configuration.

Host Key, uppercase hexademical, unicorns), we did not ob-
serve any statsticically significant differences in the fraction of
participants that missed an attack between attacks of different
strengths.

Comparison Time

The median time spent comparing fingerprints* ranged from
2.0 seconds for the unicorns representation to 8.7 seconds for
the alternating vowels/consonants representation. Graphical
representations were generally faster to compare than textual
ones. The median comparison times for each representation
are shown in Figure 5.

Differences in comparison time between conditions were sig-
nificant (y* = 289.39, df = 16, p < .001). Looking at individ-
ual conditions, the median comparison time was significantly
lower for unicorns (2.0 s) compared to both hexadecimal (8.0
s; p < .001) and Visual Host Key (5.51 s; p < .001). In con-
trast to related work by Dechand et al. [6], we did not observe
any statistically significant differences in comparison time
between textual representations.

Subjective Ratings

We asked participants for their subjective ratings before we
revealed whether they had missed the attack. For all repre-
sentations, most participants (70% for alternating to 91% for
Vash) believed that the time it took to compare fingerprints
was reasonable for a security check. The majority also thought

“4For participants in experimental conditions where the time to beat
was set at 540 seconds.

hex, confirm, bothvis, 260
num, confirm, bothvis, 260
alt, confirm, bothvis, 260
word, confirm, bothvis, 260
sent, confirm, bothvis, 260
ssh, confirm, bothvis, 260
uni, confirm, bothvis, 260

vash, confirm, bothvis, 260

hex, select, bothvis, 260

hex, confirm, toggle, 260
vash, confirm, toggle, 260
hex, confirm, bothvis, 240
uni, confirm, bothvis, 2740
hex, confirm, bothvis, 2/80

ssh, confirm, bothvis, 2780

|
(]
ED—.- omeee o

0 10 20 30
Time (seconds)

hex, confirm, bothvis, 260, 2x time

hex (low), confirm, bothvis, 2°60

Figure 5: Median comparison time by condition.

that it was easy to compare fingerprints and were confident
that they could do so correctly. We did not observe statistically
significant differences in ratings by condition for confidence
(p = .386), ease of use (p = .102), or reasonableness of com-
parison time (p = .117).

Compare-and-select

Compare-and-select participants did not spend much time
comparing fingerprints. Of the configurations involving textual
representations, the compare-and-select configuration had the
lowest median comparison time (5.2 seconds), though this
difference was not statistically significant.

Across all experimental conditions, the compare-and-select
condition had the lowest attack detection rate; 72% of partic-
ipants missed the simulated attack. The difference in attack
detection rate between our baseline compare-and-confirm hex-
adecimal condition and the compare-and-select hexadecimal
condition was statistically significant (p < .001).

Toggle Use Case

Our toggle use case explored the effect of requiring users to
toggle back and forth between fingerprints in order to make
comparisons, as opposed to being able to view both simul-
taneously. For hexadecimal, we did not observe statistically
significant differences in attack detection rate or comparison
time between toggle and simultaneously visible configurations.
For Vash, only the difference in comparison time between tog-
gle and simultaneously visible configurations was statistically

significant (median time of 5.2 seconds when toggling, com-
pared to 2.2 seconds when not; p < .001).

While it is not surprising that participants would take longer
to compare fingerprints when they have to toggle between two
views to perform that comparison, it is interesting to compare
the interaction between visibility mode and representation.
While participants did not take significantly longer comparing
hexadecimal fingerprints when they had to toggle (median tog-
gle: 9.8 s; both visible: 8.0 s), they did take significantly longer
comparing Vash fingerprints when they had to toggle (median
toggle: 5.2 s; both visible: 2.2 s). One explanation for this is
that fingerprints based on abstract art are difficult to commit
to memory, and so require more toggles (and thus more time)
to compare than textual representations like hexadecimal.

Target Time-to-beat

We set the time-to-beat to 1080 seconds in one condition,
which allowed approximately 36 seconds per task. All partici-
pants finished before the time-to-beat, with a median elapsed
activity time (reflected in the on-screen stopwatch) of 716
seconds. The median comparison time for participants in the
2x time configuration was significantly different from those in
the comparable configuration where the time-to-beat was 540
seconds (11.03 compared to 8.02 s; p = .005). The difference
in the fraction of attacks missed was not significantly differ-
ent between the 2x time configuration (10% missed) and the
corresponding regular configuration (21% missed).

Comparison Strategies

Participants had a variety of strategies for comparing finger-
prints. For textual fingerprints, participants often compared
some subset of the beginning, middle, and end of fingerprints.
Some participants also chose to compare random parts of the
fingerprint, including one participant who was shown the hex-
adecimal representation, who said: “I first checked the last set
of numbers, then randomly glanced at other sections until I
felt I had verified enough values.”

Other participants compared fingerprints in reading order, and
instead focused on methods for efficiently doing so. For ex-
ample, some participants had a strategy similar to the one
described by a participant shown uppercase hexadecimal: “I
would quickly read a segment and shift my eyes over as I
repeated it, then compare and immediately/cross over into
reading the next set from the other card to myself as I shifted
back and compared to the next set of numbers, etc. - constant
crossovers, but not having to cross over without going towards
the next step to reduce time.” Interestingly, one participant
chose to compare hexadecimal fingerprints in reverse reading
order: “I started with the rightmost set of numbers on the
first line of the card, found one of the offered fingerprints that
matched, then compared numbers back and forth in reverse
reading order. I thought it would be easier to be accurate if
using a technique that wouldn’t make me fall into an easy
‘reading’ mode.”

For all textual fingerprint representations besides sentences,
fingerprints were presented in chunks of a fixed size, which

provide a natural unit of comparison.’ Indeed, many partici-
pants reported comparing fingerprints chunk-by-chunk. How-
ever, some participants chose to devise their own chunking
strategy, a strategy prior work in the area of system-generated
PINs has observed [12]. Many participants chose to com-
pare multiple hexadecimal chunks at a time. Other reported
units of comparison for textual representations included sen-
tences, rows, and columns. Participants also described chunk-
ing strategies for graphical representations, such as comparing
fingerprints by quadrant. Interestingly, more than one partic-
ipant treated the visual host key representation more akin to
textual representations, and compared in units of lines of text.

Although some participants compared graphical representa-
tions according to a chunking strategy, more commonly par-
ticipants mentioned comparing particular features or charac-
teristics of the specific fingerprints shown. One participant
shown Vash said they tried “to pick out a couple things that
might be different between pictures and then alternate between
them to see if they are different.” For Visual Host Key, one
participant’s strategy was to “look at general cues like the
placement of the dots or big letters like B or S or E.”

Participants strategies sometimes distinguished between the
size of differences they looked for when performing compar-
isons, particularly for graphical representations. Some partic-
ipants only checked for large differences. Others adopted a
layered approach in which they looked for large differences
first, followed by a search for more subtle differences. For
example, one participant described this strategy for comparing
Visual Host Key fingerprints: “The first thing I did was to
try and glance at the whole fingerprint and see if anything
jumped out at me. If I saw no difference by looking at the
basic overview of it then I looked with a little more detail. If
I was still unsure of its validity then I examined each line as
quickly and accurately as possible.”

DISCUSSION

Impact of Methodology

A main difference between our study and closely related
work [6] was our focus on examining practical effects such as
habituation, stress, and difficulties in comparison caused by
variations in color, font, and position of the two fingerprints
relative to each other. Based on both quantitative and qualita-
tive data, we believe we successfully simulated some of these
practical constraints, which we show do affect user behavior.

For example, in practice, attacks are likely to be few and far
between. We simulated this by asking users to perform many
comparisons of matching fingerprints before exposing them
to an attack. Failing to find differences after several com-
parisions, most participants refined their strategy to compare
only selected parts of fingerprints, which in turn increased the
chance that they would miss attacks. Our experiment appeared
to successfully simulate situations where users feel pressed

SFor the sentence representation, individual sentences served a sim-
ilar purpose, though the way we presented it made it difficult to
immediately discern sentences as individual units.

for time. When asked what the hardest thing about the activ-
ity was, many participants responded that they felt stressed,
pressured, distracted, or in a rush.

To verify that results weren’t unduly driven by participants’
need to finish tasks quickly, we included a condition in which
participants had twice the time to complete the activity. In this
condition, participants took only about 37% more time for each
comparison, suggesting that time pressure was no longer a
significant factor. These participants did make fewer mistakes
(though the difference was not significant) but continued to
miss attacks, suggesting both that time pressure in the study
was at least partly successful at simulating real-life stress and
that this stress was not the only factor which lead to mistakes.

Compare-and-select vs. Compare-and-confirm

We were surprised by how susceptible the compare-and-select
method of verifying fingerprints was to attacks. Compare-and-
select seeks to ease comparisons by offering users multiple
options from which to select a fingerprint that matches another
one that they are looking at. Over time, however, the compare-
and-select approach appears to train users that one of the
options is always correct (since some options always aren’t).
More specifically, at the end of the study we asked participants
to report their concern about false negatives (saying that the
fingerprints did not match when in fact they did) and false pos-
itives (saying that two fingerprints matched when they did not).
While there was no significant difference in the rate at which
compare-and-confirm and compare-and-select participants re-
ported concern about false negatives (p = .657), compare-and-
select participants were significantly less worried about false
positives, i.e., failing to detect an attack (p < .001).

At the same time, while current implementations of compare-
and-select appear to be a poor fit at least for fingerprint com-
parisions, there has been discussion of a compare-and-select
approach where the options are chosen to be visually simi-
lar. A potential benefit of this approach is that users would
be forced to focus on small details (since through a cursory
comparison all options would look alike), leading to more
effective security. A potential downside is the usability cost of
performing detailed comparisions between all the options that
need to be compared.

Desirable Properties and Tradeoffs

For both textual and graphical representations, participants
struggled to decide how detailed a comparison to perform. For
graphical representations, participants noted slight differences
in color (as could potentially be caused by comparing a finger-
print printed on a business card to one on a computer screen)
that caused uncertainties.

Participants shown graphical fingerprints tended to look at the
big picture more often. While this is fine if small differences
do not exist, it may be feasible for a determined attacker to
find a key whose fingerprint is overall similar to the target
fingerprint but different in small details, as was the case for
our unicorn condition.

One advantage of textual formats like hexadecimal over image-
based formats like Vash is that the former allow a user to

know for certain whether two fingerprints are the same. For
textual formats, a motivated user can check each digit and
compare. For Vash, manual human comparison can only go
so far; the user cannot confirm each pixel value through just
visual inspection, and the representation does not convey what
the smallest difference the user should look for is.

Another advantage of textual representations relates to the
fact that they easily lend themself to being segmented into a
particular structure, e.g., chunks of four characters, lines of
text, etc. This structure seems to offer participants a useful
reference point at semantically arbitrary locations within a
fingerprint. Participants reported (unknowingly) taking advan-
tage of this structure by making multiple detailed comparisons
between various parts of corresponding fingerprints. This kind
of behavior seems likely to make successful attacks less likely.

Recommendations

Overall, all the representations and configurations we experi-
mented with exhibited higher rates of successful attack than
seems desirable for high-risk situations. This strongly sug-
gest that additional effort should be put towards removing
the human in the loop, e.g., by using a smartphone camera to
capture a printed fingerprint and having smartphone software
make the comparison. When manual fingerprint comparison is
necessary, the right choice likely depends on the context, since
the different fingerprint representations we experimented with
showed substantially different security and usability proper-
ties.

For all representations we tested, we observed participants
making rational (if not always well informed) assumptions
about how to go about comparing fingerprints. Graphical
representations in general seemed to be more susceptible to
comparison strategies that ignored fine details; at the same
time, they allowed seemingly easy and quick comparisons.
Consequently, unless the representation is accompanied by
measures to help the user compare small details between two
fingerprints, graphical representations appear not to be well
suited for high-risk situations, but could be of benefit in low-
risk environments, when attackers are not likely to be strong
and usability is paramount.

When security is paramount, the best option is likely one we
did not test: manually copying a printed fingerprint into a de-
vice and having software on that device make the comparison.
This virtually eliminates the possibility of missing an attack,
but at a high usability cost. For situations in which risk is
not high and there is a need to balance security and usability,
textual representations like hex (but also others like ASCII art
and sentences) may be appropriate.

ACKNOWLEDGMENTS

This work was supported in part by the NSA Science of Se-
curity Lablet at Carnegie Mellon University, by NSF grant
DGE-0903659, and by a gift from Google.

REFERENCES
1. akwizgran. 2014. Basic English: Encode random
bitstrings as pseudo-random poems. (2014).
https://github.com/akwizgran/basic-english

https://github.com/akwizgran/basic-english

10.

11.

12.

. J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R.
Thayer. 2007. OpenPGP message format. (2007).
https://tools.ietf.org/html/rfc4880

. Sandy Clark, Travis Goodspeed, Perry Metzger, Zachary
Wasserman, Kevin Xu, and Matt Blaze. 2011. Why
(special agent) Johnny (still) can’t encrypt: A security
analysis of the APCO Project 25 two-way radio system.
In Proceedings of the 20th USENIX Conference on
Security (SEC’11).
http://dl.acm.org/citation.cfm?id=2028067.2028071

. Terrence Cole. 2011. Vash: Visually pleasing and distinct

abstract art, generated uniquely for any input data. (2011).

https://github.com/thevash/vash

. Colin Davis. 2016. Robohash. (2016).
https://robohash.org/

. Sergej Dechand, Dominik Schiirmann, Karoline Busse,
Yasemin Acar, Sascha Fahl, and Matthew Smith. 2016.
An empirical study of textual key-fingerprint
representations. In 25th USENIX Security Symposium
(USENIX Security 16).
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/dechand

. Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim,

Jonathan McCune, and Adrian Perrig. 2013. SafeSlinger:

Easy-to-use and secure public-key exchange. In
Proceedings of the 19th Annual International Conference
on Mobile Computing & Networking (MobiCom ’13).
DOI:http://dx.doi.org/10.1145/2500423.2500428

. J. Galbraith and R. Thayer. 2006. The Secure Shell (SSH)
public key file format. (2006).
https://www.ietf.org/rfc/rfc4716.txt

. Simson L. Garfinkel and Robert C. Miller. 2005. Johnny
2: A user test of key continuity management with
S/MIME and Outlook Express. In Proceedings of the
2005 Symposium on Usable Privacy and Security
(SOUPS ’05). DOI:
http://dx.doi.org/10.1145/1073001.1073003

Shirley Gaw, Edward W. Felten, and Patricia
Fernandez-Kelly. 2006. Secrecy, flagging, and paranoia:
Adoption criteria in encrypted email. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (CHI 06). DO1:
http://dx.doi.org/10.1145/1124772.1124862

Hsu-Chun Hsiao, Yue-Hsun Lin, Ahren Studer,
Cassandra Studer, King-Hang Wang, Hiroaki Kikuchi,
Adrian Perrig, Hung-Min Sun, and Bo-Yin Yang. 2009. A
study of user-friendly hash comparison schemes. In 2009

Annual Computer Security Applications Conference. DO :

http://dx.doi.org/10.1109/ACSAC.2009.20

Jun Ho Huh, Hyoungshick Kim, Rakesh B. Bobba,
Masooda N. Bashir, and Konstantin Beznosov. 2015. On
the memorability of system-generated PINs: Can
chunking help?. In Eleventh Symposium On Usable
Privacy and Security (SOUPS ’15). https://www.usenix.
org/conference/soups2015/proceedings/presentation/huh

14.

15.

17.

18.

20.

21.

22.

23.

24.

25.

26.

. Antti Huima. 2000. The Bubble Babble binary data

encoding. (2000). http://web.mit.edu/kenta/www/one/
bubblebabble/spec/jrtrjwzi/draft-huima-01.txt

Ronald Kainda, Ivan Flechais, and A. W. Roscoe. 2009.
Usability and security of out-of-band channels in secure
device pairing protocols. In Proceedings of the 5th
Symposium on Usable Privacy and Security (SOUPS ’09).
DOI:http://dx.doi.org/10.1145/1572532.1572547

Ruogu Kang, Stephanie Brown, Laura Dabbish, and Sara
Kiesler. 2014. Privacy attitudes of Mechanical Turk
workers and the U.S. public. In Proceedings of the Tenth
Symposium on Usable Privacy and Security (SOUPS ’14).
https://www.usenix.org/conference/soups2014/
proceedings/presentation/kang

. Alfred Kobsa, Rahim Sonawalla, Gene Tsudik, Ersin

Uzun, and Yang Wang. 2009. Serial hook-ups: A
comparative usability study of secure device pairing
methods. In Proceedings of the 5th Symposium on Usable
Privacy and Security (SOUPS °09). DOI1:
http://dx.doi.org/10.1145/1572532.1572546

Arun Kumar, Nitesh Saxena, Gene Tsudik, and Ersin
Uzun. 2009. Caveat eptor: A comparative study of secure
device pairing methods. In 2009 IEEFE International
Conference on Pervasive Computing and
Communications. DO :
http://dx.doi.org/10.1109/PERCOM.2009.4912753

Raph Levien and Donald Johnson. 1998. Snowflake.
(1998). http://dlakwi.net/snowflake/snowflake.html

. Dirk Loss, Tobias Limmer, and Alexander von Gernler.

2009. The drunken bishop: An analysis of the OpenSSH
fingerprint visualization algorithm. (2009).
http://dirk-loss.de/sshvis/drunken_bishop.pdf

Skylar Nagao. 2016. Avatars. (Oct 2016). https://peerio.
zendesk.com/hc/en-us/articles/202729949-Avatars

Off-the-Record Messaging. 2016. Fingerprints. (2016).
https://otr.cypherpunks.ca/help/fingerprint.php

OpenSSH. 2008. OpenSSH 5.1 release announcement.
(2008). https://www.openssh.com/txt/release-5.1

Adrian Perrig and Dawn Song. 1999. Hash visualization:
A new technique to improve real-world security. (1999).
https://users.ece.cmu.edu/~adrian/projects/validation/

Plasmoid. 2003. Fuzzy fingerprints: Attacking
vulnerabilities in the human brain. (2003).
https://www.thc.org/papers/£ffp.pdf

David Roundy. 2014. Visual hash. (2014).
http://visual-hash.readthedocs.io/en/latest/

Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der
Horst, and Kent Seamons. 2013. Confused Johnny: When
automatic encryption leads to confusion and mistakes. In
Proceedings of the Ninth Symposium on Usable Privacy
and Security (SOUPS ’13). DOI:
http://dx.doi.org/10.1145/2501604.2501609

https://tools.ietf.org/html/rfc4880
http://dl.acm.org/citation.cfm?id=2028067.2028071
https://github.com/thevash/vash
https://robohash.org/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/dechand
http://dx.doi.org/10.1145/2500423.2500428
https://www.ietf.org/rfc/rfc4716.txt
http://dx.doi.org/10.1145/1073001.1073003
http://dx.doi.org/10.1145/1124772.1124862
http://dx.doi.org/10.1109/ACSAC.2009.20
https://www.usenix.org/conference/soups2015/proceedings/presentation/huh
https://www.usenix.org/conference/soups2015/proceedings/presentation/huh
http://web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt
http://web.mit.edu/kenta/www/one/bubblebabble/spec/jrtrjwzi/draft-huima-01.txt
http://dx.doi.org/10.1145/1572532.1572547
https://www.usenix.org/conference/soups2014/proceedings/presentation/kang
https://www.usenix.org/conference/soups2014/proceedings/presentation/kang
http://dx.doi.org/10.1145/1572532.1572546
http://dx.doi.org/10.1109/PERCOM.2009.4912753
http://dlakwi.net/snowflake/snowflake.html
http://dirk-loss.de/sshvis/drunken_bishop.pdf
https://peerio.zendesk.com/hc/en-us/articles/202729949-Avatars
https://peerio.zendesk.com/hc/en-us/articles/202729949-Avatars
https://otr.cypherpunks.ca/help/fingerprint.php
https://www.openssh.com/txt/release-5.1
https://users.ece.cmu.edu/~adrian/projects/validation/
https://www.thc.org/papers/ffp.pdf
http://visual-hash.readthedocs.io/en/latest/
http://dx.doi.org/10.1145/2501604.2501609

217.

28.

29.

30.

31.

32.

Maliheh Shirvanian and Nitesh Saxena. 2015. On the
security and usability of crypto phones. In Proceedings of
the 31st Annual Computer Security Applications
Conference (ACSAC 2015). DOI:
http://dx.doi.org/10.1145/2818000.2818007

Ryan Stedman, Kayo Yoshida, and Ian Goldberg. 2008. A
user study of Off-the-Record Messaging. In Proceedings
of the 4th Symposium on Usable Privacy and Security
(SOUPS ’08). DOI:
http://dx.doi.org/10.1145/1408664.1408678

Marc Stevens, Pierre Karpman, and Thomas Peyrin. 2016.
Freestart collision for full SHA-1. In Proceedings of the
35th Annual International Conference on Advances in
Cryptology (EUROCRYPT 2016). DOI:
http://dx.doi.org/10.1007/978-3-662-49890-3_18

Zettabyte Storage. 2011. Vash: The visual hash. (2011).
https://web.archive.org/web/20130127121849/http:
//www.thevash.com

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha
Fahl, Henning Perl, Ian Goldberg, and Matthew Smith.
2015. SoK: Secure messaging. In Proceedings of the
2015 IEEE Symposium on Security and Privacy (SP ’15).
DOI:http://dx.doi.org/10.1109/SP.2015.22

Ben Dumke v. d. Ehe. 2012. Unicornify! How does it
work? (2012). https://unicornify.appspot.com/making-of

33.

34.

35.

36.

37.

Serge Vaudenay. 2005. Secure communications over
insecure channels based on Short Authenticated Strings.
In Proceedings of the 25th Annual International
Conference on Advances in Cryptology (CRYPTO’05).
DOI:http://dx.doi.org/10.1007/11535218_19

WhatsApp. 2016. WhatsApp encryption overview:
Technical white paper. (April 2016).
https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf

Alma Whitten and J. D. Tygar. 1999. Why Johnny can’t
encrypt: A usability evaluation of PGP 5.0. In
Proceedings of the 8th Conference on USENIX Security
Symposium (SSYM’99).
http://dl.acm.org/citation.cfm?id=1251421.1251435

Wickr. 2016. What is the key verification feature? (2016).
https://wickr.desk.com/customer/en/portal/articles/
2342342-what-1is-the-key-verification-feature-

Min Wu, Robert C. Miller, and Greg Little. 2006. Web
Wallet: Preventing phishing attacks by revealing user
intentions. In Proceedings of the Second Symposium on
Usable Privacy and Security (SOUPS ’06). DOIL:
http://dx.doi.org/10.1145/1143120.1143133

http://dx.doi.org/10.1145/2818000.2818007
http://dx.doi.org/10.1145/1408664.1408678
http://dx.doi.org/10.1007/978-3-662-49890-3_18
https://web.archive.org/web/20130127121849/http://www.thevash.com
https://web.archive.org/web/20130127121849/http://www.thevash.com
http://dx.doi.org/10.1109/SP.2015.22
https://unicornify.appspot.com/making-of
http://dx.doi.org/10.1007/11535218_19
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
http://dl.acm.org/citation.cfm?id=1251421.1251435
https://wickr.desk.com/customer/en/portal/articles/2342342-what-is-the-key-verification-feature-
https://wickr.desk.com/customer/en/portal/articles/2342342-what-is-the-key-verification-feature-
http://dx.doi.org/10.1145/1143120.1143133

	Introduction
	Background and Related Work
	Fingerprint Applications
	Usability of Fingerprints
	Entropy as a Security Metric

	Methodology
	Security Task Design Considerations
	Threat Model and Simulated Attack
	Experimental Factors
	Representations
	Comparison Mode
	Visibility Mode
	Attack Strength
	Other Factors

	Experimental Conditions
	Statistical Analysis
	Limitations
	Participants

	Results
	Representations
	Attack Detection Rate
	Comparison Time
	Subjective Ratings

	Compare-and-select
	Toggle Use Case
	Target Time-to-beat
	Comparison Strategies

	Discussion
	Impact of Methodology
	Compare-and-select vs. Compare-and-confirm
	Desirable Properties and Tradeoffs
	Recommendations

	Acknowledgments
	References

