Practical Recommendations for Stronger, More Usable
Passwords Combining Minimum-strength, Minimum-length,
and Blocklist Requirements

Joshua Tan, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor
Carnegie Mellon University
{jstan,Ibauer,nicolasc,lorrie}@cmu.edu

ABSTRACT

Multiple mechanisms exist to encourage users to create stronger
passwords, including minimum-length and character-class require-
ments, prohibiting blocklisted passwords, and giving feedback on
the strength of candidate passwords. Despite much research, there
is little definitive, scientific guidance on how these mechanisms
should be combined and configured to best effect. Through two
online experiments, we evaluated combinations of minimum-length
and character-class requirements, blocklists, and a minimum-strength
requirement that requires passwords to exceed a strength threshold
according to neural-network-driven password-strength estimates.

Our results lead to concrete recommendations for policy config-
urations that produce a good balance of security and usability. In
particular, for high-value user accounts we recommend policies that
combine minimum-strength and minimum-length requirements.
While we offer recommendations for organizations required to use
blocklists, using blocklists does not provide further gains. Inter-
estingly, we also find that against expert attackers, character-class
requirements, traditionally associated with producing stronger pass-
words, in practice may provide very little improvement and may
even reduce effective security.

CCS CONCEPTS

« Security and privacy — Authentication; Usability in secu-
rity and privacy.

KEYWORDS

password policies; neural networks; blocklists

ACM Reference Format:

Joshua Tan, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2020.
Practical Recommendations for Stronger, More Usable Passwords Combin-
ing Minimum-strength, Minimum-length, and Blocklist Requirements. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS °20), November 9-13, 2020, Virtual Event, USA. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3372297.3417882

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’20, November 9-13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7089-9/20/11.

https://doi.org/10.1145/3372297.3417882

1 INTRODUCTION

To help users create stronger passwords, system administrators
often require passwords to exceed a certain length, contain at least
a specific number of character classes, or not appear on a block-
list [19]. Users are also often nudged to create stronger passwords
by password meters that give feedback on the strength of candidate
passwords and suggestions about how to improve them.

Early guidance for how to deploy these approaches relied mostly
on common sense and experts’ opinions [17, 18]. Over the past
decade, a scientific basis has emerged for what requirements are
most effective at encouraging users to create passwords that are
strong but still memorable. For example, research has shown that
increasing minimum length may increase password strength more
than relying just on character class requirements [26]; that pass-
word meters can very effectively nudge users to create stronger
passwords [28]; and that carefully configured blocklists can help
prevent users from picking easily guessed passwords [8].

These early efforts shed light on which password requirements
were more or less effective, but stopped short of providing em-
pirically evaluated, definitive guidance for how to combine re-
quirements. In this paper, we seek to address this. Building on
previous findings, we empirically examine combinations of length,
character-class, blocklist, and password meter requirements—all of
which were previously individually studied—as well as minimum-
strength requirements, which have been less studied. We consider
practical implementions of minimum-strength requirements, us-
ing estimates from a neural network trained on leaked password
data. Our research questions examine and compare the security
and usability properties of differently configured blocklists and
minimum-strength requirements, with careful attention to how
the choice of underlying composition requirements affect these
properties.

Our results, derived through two successive experiments that
investigated a wide range of potential interactions between require-
ments, allow us to provide concrete, practical recommendations
for how to combine and configure these mechanisms. We find that
how users pick passwords has changed over time, and that this,
in combination with advances in password guessing, implies that
requiring passwords to have multiple character classes brings at
best minor benefit to password strength. Although some blocklist
configurations are more effective than others at eliminating weak
passwords, policies that require passwords to have at least eight
characters and that simultaneously prohibit passwords that can be
guessed within 10° guesses perform better—in terms of encourag-
ing password strength—than the best-performing blocklist policies
we examine. Properly configured minimum-strength policies not

only match our top tested blocklist policies in usability, but can
also provide better security, especially against offline attacks that
make up to 101 guesses. For organizations that nevertheless require
blocklists, we recommend blocklist policies that impose a minimum
of eight characters and perform a fuzzy blocklist-matching check
against either a subset of the most popular passwords found in pass-
word leaks, or that perform a fullstring-matching check against a
very large database of publicly-leaked passwords.

A primary contribution of our work is to design, evaluate, and
recommend configurations for minimum-strength requirements.
These requirements build on the large body of password research
conducted over the past 15 years. Conceptually, minimum-strength
requirements represent the goal of other types of password-creation
requirements that have been proposed and tested: to reject weak,
easily-guessed passwords while permitting strong, hard-to-guess
passwords. In this study, we present a concrete (neural-network-
driven) implementation of minimum-strength requirements that
both faithfully achieves password-strength goals and achieves com-
parable usability to the best competing blocklist-based policies we
tested. Neural-network-driven minimum-strength requirements
are easy to deploy, flexibly configurable, and can be easily retrained
to reflect changing patterns in passwords over time.

2 BACKGROUND AND RELATED WORK

Here we discuss related work on password composition policies
and blocklists, and on measuring password strength, including to
implement data-driven minimum-strength requirements.

2.1 Composition policies

Password composition policies aim to help users create more unique,
less predictable passwords. Composition policies can be used at
password-creation time to enforce a minimum number of character
classes—uppercase letters, lowercase letters, symbols, and digits—
and a minimum-length requirement.

Early work on composition policies focused on character-class re-
quirements to increase password strength [18]. In general, policies
that require more character classes have been found to produce over-
all stronger passwords [11, 13]. Later work explored policies that
emphasized length over character-class composition. Researchers
exploring length requirements have found that reducing the number
of required character classes while increasing the minimum-length
requirement could strengthen passwords without decreasing their
memorability or making them more difficult to create [11, 13, 25, 26].

Although researchers and, more recently, NIST advise to avoid
composition policies requiring a minimum number of character
classes, this type of policy is still often used in practice [4, 14]. We
include such policies in our studies to provide concrete recommen-
dations to organizations that may continue to rely on them.

2.2 Blocklists

Even if password requirements are generally effective at improving
strength, some users will fulfill them predictably. Thus, character-
class and minimum-length rules are insufficient to prevent very
weak passwords [25]. For example, 4class8 and Iclass16 policies
allow extremely predictable passwords such as “Password1!” and

“passwordpassword” A common mitigation is to combine composi-
tion requirements with a blocklist check. For instance, NIST 800-63B
recommends that passwords not be in a list of commonly-used, ex-
pected, or compromised values [19]. Properly configured blocklist
checks can reject predictable, or easy-to-guess passwords.

A blocklist requirement uses a wordlist and a matching algorithm
that checks whether a given password is prevented by that wordlist.
Wordlists can contain common sequences of characters, as well
as previously-leaked passwords. Matching algorithms range from
exact match (a candidate password should not be in the wordlist),
to more complicated rules—e.g., stripping symbols and digits from
the password, making it case-insensitive, and checking that the
resulting string does not match any wordlist entry.

Prior work found that blocklists used by major online service
providers vary in architecture, including client-side, server-side,
and hybrid approaches [4]. Blocklists differed in their wordlists
and matching algorithms, e.g., whether and how symbols or digits
were removed from passwords before matching. They also differed
in whether they forbid, warned, or decreased a password-strength
score if a blocklist check returned positive.

Initial password research focused on blocklists that forbid dictio-
nary words in passwords. For example, many studies have exam-
ined policies that perform blocklist checks against the OpenWall
wordlist [12]. These studies found that blocklist checks caused
more annoyance compared to policies without them. More recently,
blocklists based on ad-hoc cracking dictionaries were found to
produce weaker passwords than when relying on larger wordlists
gleaned from password leaks, such as the Xato password corpus [5].
Blocklists based on Xato were found to produce reasonably strong
passwords [8, 28]; we will use this wordlist here.

By analyzing large leaked sets of passwords, Weir et al. found
that larger blocklists strengthened passwords [33]. Kelley et al.
tested three blocklists varying in size and similarly found that larger
blocklists produced stronger passwords [11]. While blocklists might
be effective against online attacks, Floréncio et al. questioned their
practicality against offline attacks due to the required wordlist size
or potential negative usability impact [7].

Despite these studies, our understanding of blocklist usability
and security effects is incomplete, particularly for large blocklists
or string-matching algorithms that remove non-alphanumeric char-
acters. Prior work that uses retrospective policy analyses has lim-
itations, e.g., subsetting policy-allowed passwords retroactively
overestimates the impact of password policies on strength [14] and
cannot account for users who replace blocklisted passwords with
even weaker, but non-blocklisted ones. Retrospective studies also
cannot analyze many usability-related aspects of password policies.

Prior findings may also not apply to modern contexts. Conclu-
sions on blocklist usability derived from studies that lack real-time
feedback [11, 13] may lead to overly pessimistic usability results.
For example, the largest cause of policy compliance failure in prior
work was the dictionary check, which real-time feedback could
alleviate [25]. Additionally, blocklists may differently impact pass-
word strength and usability depending on interactions between
the wordlist, matching algorithm, and composition policy they
augment. For instance, prior work has examined digit-and-symbol-
stripping matching algorithms with 3class§ and 4class8 policies,

and wordlists based on the OpenWall dictionary, which was found
to be relatively ineffective [12, 13].

2.3 Quantifying password strength

The strength of passwords produced under a particular password-
creation policy can be quantified using guess numbers. Guess num-
bers can be computed by enumerating the passwords predicted by
a particular guessing model, in decreasing probability, or according
to the order that a commonly-configured password-cracking tool
would output guesses. A password’s guess number estimates the
number of guesses an attacker need make before guessing that
particular password. Guess numbers are parameterized by the par-
ticular tool used, as different tools and models guess passwords in
different orders. Prior work recommends taking the minimum guess
number across multiple automated guessing methods as a conser-
vative proxy for an expert attacker’s guessing capabilities [30].

The Password Guessability Service (PGS) [21] is a state-of-the-
art tool for estimating password strength. PGS supports the popular
password-cracking tools Hashcat and John the Ripper, as well as
tools based on password-modeling approaches such as Probabilis-
tic Context-Free Grammars (PCFG) and artificial neural networks.
PGS also provides min-auto guess numbers, computed as the lowest
guess number among the set of supported password-guessing meth-
ods. For probabilistic models, Monte Carlo sampling methods allow
for estimation of guess numbers for low-probability passwords [5].
Probability-to-guess-number mappings can be precomputed, en-
abling client-side, real-time guess number estimates. We apply this
method in our study, using a meter based on prior work [28].

Guess numbers do not paint a complete picture. The number and
frequency of guesses an attacker can make depend on many factors,
including whether it is an online or offline attack, the extent to
which rate limiting is applied, and whether defenses such as iterated
hashing are deployed. Floréncio et al. discuss the “online-offline
chasm” between password-strength thresholds that may be relevant
in practice [7]. They argue that offline attacks may not always be a
threat, e.g., for service providers that reversibly encrypt passwords
or store passwords in plaintext. When offline attacks are applicable,
they argue that the user effort to create passwords that resist such
attacks is usually wasted unless passwords can withstand attacks
that make up to 10'* guesses.

2.4 Minimum-strength requirements

Minimum-strength password requirements have been explored
less than other types of policy requirements. Accurate strength
estimates for individual passwords are indeed difficult to perform
in real-time. Password-strength heuristics can roughly estimate
password strength, but the accuracy of these estimates may be
insufficient. Prior work evaluating password meters has found that
strength estimates from heuristic-based meters are often incon-
sistent [4] and contradict guess number estimations [16]. One of
the more accurate password-strength estimators, zxcvbn [34], uses
advanced heuristics to output quite reliable password strength es-
timates at low guess numbers typical of online attacks. Although
zxcvbn can be configured to meet minimum password-strength
thresholds, this has not been evaluated through user studies.

Recently, Melicher et al. designed a client-side recurrent neural
network for modeling password strength [16]. This development
has enabled minimum-strength requirements based on password-
strength estimates that are both accurate and data driven, rather
than heuristic driven. In our study, we explore minimum-strength
requirements expressed as a minimum guess number estimated by a
neural network. This is the first time we are aware of that this type
of requirement has been incorporated into a password-creation
policy and evaluated in a user study.

3 METHODOLOGY

Here we present our experimental factors and conditions; the de-
sign of the user studies we used to collect data; and the statistical
methods we applied to analyze that data. To limit the number of
interactions between policies that we would have to simultaneously
explore, we conducted two experiments (Experiment 1 and Exper-
iment 2), each involving independent data collection. Both were
identical in terms of methodology and implementation—only the
experimental conditions differed.

3.1 Experimental factors

Each of our user studies presented participants with password-
creation policies that differed based on assigned treatment. The
experimental factors consisted of three types of requirements that
can be enforced by a password-creation policy: composition, block-
list, and minimum-strength requirements.

We performed retrospective analyses on randomly-selected sub-
sets of leaked 000webhost passwords to help identify the parameters
to explore in our user study for each type of experimental factor.
This involved retroactively applying a password policy to a set of
leaked passwords and observing the proportions and strengths of
passwords that were allowed or rejected by that policy. Retrospec-
tive analyses and analyses relying on leaked data have inherent lim-
itations discussed in Section 2.2. The overall findings we present are
based on data collected from experimentally designed user studies,
which avoids these limitations. In addition, results from Experiment
1 informed the parameters explored in Experiment 2.

Composition requirements. All policies required passwords to be
at least eight characters long. In addition, some policies required
longer password lengths or required passwords to contain a min-
imum number of character classes. We abbreviate composition
requirements using a notation that lists the required number of
character classes followed by the minimum length, e.g., 3c12 cor-
responds to requirements that passwords contain at least three
character classes and at least twelve characters. In Experiment 1,
we tested 1c¢8, 1c16, 3¢8, 3c12, and 4c8, each of which has been ex-
plored in prior work [11, 13, 15, 18, 26, 27]. In Experiment 2, we
explored additional longer-length one-class policies (1c10 and 1c12).

Blocklist requirements. We tested policies incorporating a block-
list requirement, which rejected any password that matched an
entry on a list of prohibited strings. We explored several wordlists
and matching algorithms. The majority of our blocklist configura-
tions followed previous work [8, 28, 34] in using the Xato wordlist,
consisting of 96,480 passwords that appeared four or more times in
the leaked Xato corpus of 10 million passwords [3]. We also used

a wordlist of 555 million unique passwords previously leaked in
data breaches that are accessed using the freely available Pwned
Passwords API [10].! Last, we tested the wordlist (and matching
algorithm) used at Carnegie Mellon University (CMU), which con-
sisted of 630,034 English dictionary words [1, 20].

We tested four matching algorithms: case-insensitive full-string
(cifs); case-sensitive full-string (fs); stripping digits and symbols and
then performing a case-insensitive full-string comparison (strip-
cifs); and checking whether any length-5 substring of any wordlist
entry was a case-insensitive substring of the candidate password
(ciss). Each of these has been used in deployed password-creation
policies [4]. The ciss algorithm has been explored by prior work [25],
albeit with a much smaller wordlist than we considered.?

Minimum-strength requirements. In addition to composition and
blocklist requirements, we tested policies incorporating a minimum-
strength requirement, expressed as the minimum number of guesses
that passwords should withstand in a guessing attack. We used
password-strength estimates computed by a client-side, JavaScript-
based neural network, implemented and trained following the
approach of Melicher et al. [16] (see Appendix A). We defined
minimum-strength requirements in terms of a log-10 guess number
threshold. For example, NN6 required passwords to have password-
strength estimates no weaker than 10° guesses.

We tested four minimum-strength thresholds, ranging from 10°
to 1012 guesses. In Experiment 1 we tested policies that included
NN6 and NN12 requirements. Results suggested that NN6 require-
ments may be too lenient for protecting high-value accounts and
that NN12 requirements can make password-creation annoying or
difficult for some users. Hence, we tested NN8 and NN10 in Ex-
periment 2 to explore minimum-strength thresholds that might
produce a better balance of both security and usability.

3.2 Research questions

We designed our experimental conditions to answer specific re-
search questions. Some research questions explored the security
and usability impacts of policies differing in a single experimental
factor (e.g., blocklist configuration). We also investigated whether
certain policy components impact password strength or usability
differently depending on the configuration of other policy compo-
nents (e.g., the same blocklist configuration used alongside different
composition policies). Table 1 lists our research questions and the
experimental conditions and comparisons used to answer them.

3.2.1 Experiment 1. We tested 15 experimental conditions designed
to answer four high-level research questions. In order to both
quantify the impact of blocklists relative to policies that only re-
quired composition requirements (RQI) and to find blocklist re-
quirements for use in 1c8 policies that performed well on both
security and usability dimensions (RQ2) we tested blocklist configu-
rations that were either commonly used or recommended by prior
work. Our third high-level research question focused on the im-
pact of character-class and minimum-length requirements on NN6

I This API employs privacy-protecting mechanisms to protect the confidentiality of
submitted passwords: it only accepts SHA-1 hashes of passwords and utilizes a k-
anonymity range search to report matches [9].

2We use a computationally efficient ciss implementation that performs multiple sub-
string searching via the Rabin-Karp algorithm [2].

Baseline Comparisons Exp.

RQ1: What is the impact of adding a blocklist to 1c8 and 3c8?

1c8 1c8+Pwned-fs, 1c8+Xato-cifs, 1
1c8+Xato-strip-cifs, 1c8+Xato-ciss

3c8 3c8+Xato-cifs 1

RQ2: What is the impact of varying blocklist regs. on 1c8?

1c8+Xato-strip-cifs ~ 1c8+Pwned-fs, 1¢8+Xato-cifs, 1c8+Xato-ciss 1

1c8+Xato-strip-cifs 1c8+Pwned-fs 2

RQ3: What is the impact of varying char-class and min-length
reqs. on NN6?

3c8+NN6 1c8+NN6, 1c16+NN6, 2c12+NN6, 3c12+NN6 1

RQ4: How do min-strength reqs. compare with blocklists?

1c8+NN6 1C8+PWT15deS, 1C8+Xato-ci.fs, 1
1c8+Xato-strip-cifs, 1c8+Xato-ciss

1c8+Pwned-fs 1c8+NNS, 1c8+NN10 2

1c8+Xato-strip-cifs 1c8+NNS8, 1c8+NN10 2

RQ5: How do min-strength reqs. interact with min-length reqs.?

1c8+NN10 1c8+NNS8, 1c10+NN10 2
1c10+NN8 1c8+NNS8, 1c10+NN10 2
1c12+NN10 1c8+NN10, 1c10+NN10 2

RQ6: How do blocklist reqs. interact with char-class reqs.?

1c8+Xato-strip-cifs 4c8+Xato-strip-cifs 2

1c8+Pwned-fs 4c8+Pwned-fs 2

4c8+Xato-strip-cifs 4c8+Pwned-fs 2

Table 1: Research questions and planned comparisons.

minimum-strength policies (RQ3). The particular set of character-
class and minimum-length combinations we explored included com-
position policies explored in prior work. Our fourth research ques-
tion involved directly comparing blocklist and minimum-strength
policies on both security and usability dimensions (RQ4). In Ex-
periment 1, we explored this question by comparing a variety of
blocklists with a NN6 minimum-strength policy that we hypoth-
esized would provide adequate protection against online attacks,
withstanding at least 10® guesses (RQ4.A).

3.22 Experiment 2. The results of Experiment 1 raised additional
research questions that could not be answered with the experimen-
tal data that had already been collected. Therefore, we conducted
a second experiment, testing seven new conditions and re-testing
three conditions from Experiment 1.3 One goal of Experiment 2 was
to explore how specific minimum-length requirements interacted
with specific minimum-strength requirements to effect usability or
security (RQ5). In particular, we hypothesized that longer minimum-
length requirements could make minimum-strength requirements
easier to satisfy. We explored this question using strength thresh-
olds in-between those we tested in Experiment 1; results from
that experiment had suggested NN8 and NN10 requirements may

3We collected new data for each policy in Experiment 2, even if that policy had been
previously tested in Experiment 1.

provide the level of offline protection needed for high-value ac-
counts. Experiment 2 was also designed to test whether blocklist
requirements impact password strength or policy usability differ-
ently depending on the particular character-class requirements they
are combined with, and vice versa (RQ6). We hypothesized that
fullstring blocklist checks against lists of leaked passwords might
be less useful for policies requiring many character classes, since
leaked passwords may be less likely to contain many character
classes. We also hypothesized that the strip-cifs matching algorithm
might be especially frustrating to users when combined with a 4c8
policy; compared to 1c8 passwords, 4c8 candidate passwords might
be more likely to incorporate digits and symbols in ways that would
be rejected by blocklist checks that first strip digits and symbols.
Lastly, we revisited RQ4 comparing top-performing blocklist poli-
cies from Experiment 1 with the additional NN10 and NN12 policies
tested in Experiment 2 (RQ4.B).

3.3 User-study protocol

For each experiment we ran a user study on Amazon Mechanical
Turk in which participants were tasked with creating and recalling
a password under a randomly assigned password policy. The design
of our user studies closely followed that of prior work [13, 26, 28].
In Part 1, participants were asked to role play, imagining that they
needed to create a new password because their main email account
provider had been breached. We emailed participants two days
later asking them to participate in Part 2, in which they were asked
to recall their password. We considered the data of only the par-
ticipants who completed Part 2 between two and five days after
Part 1. After each part, participants completed a survey that col-
lected demographic and usability-related data. The survey materials
are provided in Appendix E.

The password-creation task in Part 1 used a password meter de-
veloped in prior work, which incorporated real-time requirements
feedback, a password-strength bar, and text feedback on improving
password strength. Participants were shown feedback on improving
password strength only after all composition, minimum-strength,
and blocklist requirements were satisfied. The password meter’s
configuration was based on best practices empirically shown by
prior work [28]. We communicated unmet minimum-strength and
blocklist requirements as follows: for the Xato blocklist configu-
rations the meter reported that the password must “not be an ex-
tremely common password;” for the Pwned blocklist configurations
that the password must “not use a password found in previous se-
curity leaks;” and for the minimum-strength requirements that the
password must “not be similar to common passwords” (Figure 1).

We submitted the passwords created by participants to PGS [21],
which computed guess numbers for each PGS-supported guessing
approach using its recommended configuration. We additionally
computed guess numbers using a set of neural networks (collec-
tively referred to as the PGS3 NN) that we trained ourselves, closely
following the design and implementation of password models in
prior work [16]. When computing min-auto guess numbers, we
selected each password’s lowest guess number among all guessing
approaches. For the NN guessing approach, we use PGS3 NN guess
numbers in place of PGS-reported NN guess numbers, given the
improved guessing performance of the PGS3 NN (see Appendix A).

Create Your Password
Username Don't reuse a password from

user another account! Why?)

Your password must:
Password 2

....... Q Contain 8+ characters

Q Not be similar to common
Show Password passwords

m How to make strong passwords

Figure 1: Password-creation meter displaying unmet pass-
word policy requirements.

In addition to evaluating the strength and objective usability (e.g.,
memorability) of passwords created under each policy, we wanted
to understand their usability in terms of user difficulty or frustration
when creating or recalling passwords. Participants’ responses to
surveys shown after both Part 1 and Part 2 shed light on this. Our
surveys also asked questions such as whether participants reused a
previous password or wrote their password down after creating it.
In order to elicit truthful responses we told participants that they
would receive compensation regardless of their answers.

We instrumented our study to record password-creation and
recall keystrokes and whether participants copied and pasted their
password during recall tasks. When analyzing password recall, we
only analyze data for participants who: typed in their password
from memory (as self-reported in the survey); said they didn’t reuse
their study password (as self-reported); and didn’t copy and paste
their password during the Part 2 recall task, either manually from a
file or using a password manager/browser (based on keystroke data).
Study participants who become frustrated with password-creation
requirements may be more likely to drop out of our study. We
record and analyze dropout rates between experimental conditions
as potential evidence of usability issues for a given policy.

The full set of usability metrics we considered include both objec-
tive (creation/recall time, recall success, study dropout, copy/paste
from storage/password managers) and subjective data (creation
annoyance/difficulty, difficulty remembering).* Each of these met-
rics have been used in prior work to measure usability impacts of
password-creation policies [24, 27, 28].

We recruited study participants from Mechanical Turk (MTurk).
Workers were required to be located in the United States, have had
at least 500 HITs approved, and have a HIT approval rate of 95% or
higher. Workers were not allowed to participate in our study more
than once. We paid 55 cents for Part 1 of our study and 70 cents
for Part 2. Our study protocol was approved by our institutional
review board and all participants completed online consent forms.

Experiment 1 participants were recruited in July and August 2019.
Their ages ranged from 18 to 81 years, with a median of 35. 53% of
participants were female and 47% male. Of the 5,099 participants
who started the study, 4,317 finished Part 1 and 3,463 also finished
Part 2. Most (81%) participants reported that they did not have a

4 As we employ real-time feedback in our password meter, our study data do not include
the notion of a password-creation attempt. However, this concept is closely related to
creation time and creation annoyance/difficulty.

technical degree or work in an area related to computer science or
information technology. Experiment 2 participants were recruited
in October and November 2019. Their ages ranged from 18 to 90
years, with a median of 35. 56% of participants were female, 43%
male, 1% reported their gender as “Other,” and the remainder chose
not to answer. Of the 4,817 participants who started the study, 4,005
finished Part 1 and 3,014 also finished Part 2. Our password-recall
analysis includes data for 1,518 participants in Experiment 1 and
1,362 participants in Experiment 2, excluding those who reported
reusing a password or not entering their password from memory.

3.4 Statistical analysis

Before running each experiment, we identified a set of hypothesis
tests we planned to conduct to answer our research questions. We
perform omnibus tests to compare three or more conditions as well
as pairwise tests.> For each family of tests (the combination of test
type and research question), we chose the baseline condition to be
used in pairwise comparisons before collecting data.

To compare the overall strength of passwords created under
different policies, we use an extension of the Log-rank test called
the Peto-Peto test (PP). This test, used in prior work [14], weighs
early-appearing differences in guess curves more heavily than later
differences, corresponding to heavier weight for strength differ-
ences that resource-constrained or rate-limited attackers could
exploit. The Peto-Peto test is also appropriate when many data
points are censored. In our study, passwords with guess numbers
past our offline attack threshold of 10'* were censored prior to the
test (i.e., labeled as unguessed), as we wanted to compare password
guessability only up to the number of guesses that a typical attacker
could feasibly attempt in an offline attack.

To compare the vulnerability of passwords to guessing attacks
of different magnitudes, we apply Chi-square tests of independence
and Fisher’s exact tests (FET) to the percent of passwords in each set
that an attacker would guess within 10° and within 10'* attempts.®
These thresholds have been used in prior work as estimates of
how many guesses an online and an offline attacker could make [7],
respectively. Unless otherwise noted, analyses that operate on guess
numbers are based on min-auto guess number estimates.

We examine usability through statistical tests of Part 1 and
Part 2 survey data (password-creation sentiment, post-creation
actions) and behavioral data collected by our study framework
(study dropout rates, password-creation time, Part 2 recall time,
and Part 2 recall success). We bin categorical and Likert data before
applying Chi-square tests and Fisher’s tests (e.g., Likert agreement
data is grouped into two bins: “Strongly agree” or “Agree” vs. oth-
erwise). For comparing count data, we use the non-parametric
Kruskal-Wallis (KW) and Mann-Whitney U (MWU) tests.

We record whether text entered into the password-creation field
failed to meet requirements, but the real-time nature of require-
ments feedback in our meter means that even if a blocklist or

SWe tried a Cox regression model to measure guessability differences but opted for
pairwise hypothesis tests instead, due to poor fit of the linear model to our data.
5Qur conservative assumption is that the attacker knows the password distribution and
makes guesses in order of decreasing probability. While we assume the attacker knows
the length and character-class requirements when making guesses, we do not assume
that the attacker knows which passwords would have been rejected by blocklist or
minimum-strength requirements in order to avoid guessing those passwords.

minimum-strength requirement was unsatisfied at some point, the
participant may not have intended to actually create that password—
they may have had a different password in mind and hadn’t finished
typing it. To shed light on whether participants actually encoun-
tered one of these unmet requirements for a password, our survey
asked “were any passwords you tried to create rejected for the
specific reason shown above?” We interpret affirmative answers as
evidence that those participants changed their password at least
once due to the associated policy requirement.

Within each family of tests, we only perform pairwise tests
if the corresponding omnibus test is statistically significant. We
use the Holm-Bonferroni method to correct for multiple pairwise
comparisons within each family and report adjusted p-values. All
hypothesis tests use a significance level of 0.05. When comparing
two policies, we only attribute differences to a particular policy
dimension if all other dimensions in those policies are identical.

3.5 Limitations

Our study has limitations common to user studies conducted on
MTurk. Study participants may not have created passwords similar
to those they would have created for actual high-value accounts,
despite our role-playing instructions. However, prior work has
shown that MTurk passwords collected in this way are similar to
actual user passwords created for high-value accounts [6, 14].

Our password-policy results and recommendations rely on pass-
words being created under the specific password meter we used in
our study. This meter provided text feedback on how to improve
passwords, a strength bar, and real-time requirements feedback,
each of which was configured according to recommendations from
prior studies [25, 28, 29]. Based on survey responses, the major-
ity of participants found the meter to be informative, helpful, and
influential. For example, most participants reported that they im-
plemented changes suggested by text feedback and that it was
important to them that the colored bar rated their password highly.
Experiments using password meters with substantially different
implementations may produce different results.

It is worth noting that our analysis and recommendations con-
cerning blocklists do not apply to site-specific or user-specific block-
lists, which are useful for preventing passwords based on user-
associated data or contextual information that targeted guessing
attacks could leverage (e.g., user IDs, words related to the service).

4 RESULTS

The results we report here lead to our recommendation for password
policies that include both minimum-length and minimum-strength
requirements. In case an organization decides against minimum-
strength requirements, we recommend two policies incorporating
minimum-length and blocklist requirements. These policies provide
less protection than minimum-strength policies against offline at-
tacks, but provide adequate protection against online attacks while
remaining usable during password creation.

Our results from Experiment 1 show that blocklists may not
improve password strength substantially if the blocklist check uses
a strict matching algorithm with an insufficiently large wordlist.
However, when properly configured, either blocklist requirements

or minimum-strength requirements can be combined with other re-
quirements to provide adequate protection against online guessing
attacks. In Experiment 2 we explore in more depth 1¢8 minimum-
strength policies that provide strong protection against both online
and offline guessing attacks. We also extensively analyze interac-
tion effects between policy components. Experiment 2 results show
that NN8 and NN10 policies can be just as usable as the blocklist
policies we test, while also producing passwords more resistant to
offline attacks. In this section, we describe the results from both
experiments, organized by research question. P-values for each
statistical test can be found in Appendix F.1.

4.1 ROQ1: Impact of blocklists

We compared each blocklist condition to its corresponding 1c8
or 3c¢8 baseline condition to quantify the impact of blocklists on
guessability and usability. We found blocklist configurations
1c8+Pwned-fs and 1c8+Xato-strip-cifs significantly improved
password strength over their baseline without substantial
harm to usability.

As shown in Figure 2, passwords created under either 1c8+Xato-
cifs or 3c8+Xato-cifs were neither stronger overall nor less likely
to be guessed in online attacks than passwords created under the
baseline policies that only contained composition requirements.
While blocklist policies that use full-string matching can provide
adequate protection against online guessing attacks (as demon-
strated by 1c8+Pwned-fs), our results suggest that this requires a
much larger wordlist than the Xato wordlist we tested.

Of the policies with blocklists that improved password defense
against online attacks, two policies did so without also making
passwords substantially more difficult or time-consuming to create.
Both 1c8+Pwned-fs and 1c8+Xato-strip-cifs passwords were much
less likely to be guessed in online attacks (within 10® guesses) than
1c8 passwords (FET: 0% and 1% guessed, resp., vs. 6% guessed). Yet,
participants did not find either policy substantially more annoying
or difficult relative to a 1c8 policy (see Figure 10 in Appendix).

4.2 RQ2: Blocklist reqs. for 1c¢8 policies

We next compared Ic8 blocklist policies. All pairwise compar-
isons were made with respect to Xato-strip-cifs, which was rec-
ommended in prior work [8]. We found that case-sensitive, full-
string matching against very large blocklists of leaked pass-
words leads to similarly usable and secure passwords as fuzzy
matching against smaller blocklists of the most common
leaked passwords.

Prior work hypothesized that the strip-cifs algorithm would
produce strong passwords by preventing simple modifications to
blocklisted passwords that might pass the blocklist check without
improving password strength [8]. Our user study confirms this.
As shown in Figure 2, passwords created under the 1c8+Xato-cifs
policy, which did not strip digits and symbols before performing
blocklist checks, were overall weaker and more susceptible to on-
line guessing than passwords created under the Ic8+Xato-strip-
cifs policy, which stripped digits and symbols (PP, FET: 5% vs. 1%
guessed). Furthermore, while the stricter matching algorithm used
in I1c8+Xato-strip-cifs led to slightly longer password-creation times

1c8
3c8
i o
o, | — 1c8+Xato—cifs
40% 1c8+Pwned-fs
1c8+Xato-strip-cifs
1c8+Xato-ciss
- 3c8+Xato—cifs
--1c8+NN6

20%

Cumulative % guessed

00 szt Tt

3 4 5 6 7 8 9 10 11 12 13 14
log min—auto guess number

Figure 2: Min-auto guess numbers for Experiment 1 block-
list, composition-requirements-only, and 1¢8+NN6 policies.

compared to 1c8+Xato-cifs (MWU: median of 93 s vs. 70 s), it did
not make password creation more challenging or annoying.

Among blocklist configurations using the same Xato wordlist,
only 1c8+Xato-ciss produced overall stronger passwords that were
more resistant to 10'* offline attacks than 1c8+Xato-strip-cifs (PP,
FET: 24% vs. 41% guessed). However, as shown in Figure 10 and
Table 2, severe password-creation usability issues associated with
1c8+Xato-ciss prevent us from recommending it in place of 1c8+Xato-
strip-cifs. Participants took longer to create passwords under 1c8+Xato-
ciss than under 1c8+Xato-strip-cifs (MWU: median of 139 s vs. 93
s) and reported more annoyance (FET: 47% vs. 35%) and difficulty
(FET: 49% vs. 27%). Compared to 1c8+Xato-strip-cifs participants,
1c8+Xato-ciss participants were also more likely to drop out before
finishing Part 1 (FET: 26% vs. 12%) and to digitally store or write
down their password after creating it (FET: 65% vs. 53%). These
results lead us to conclude that while a ciss blocklist matching algo-
rithm can provide strong security against guessing attacks, it also
may severely harm password-creation usability if used alongside a
wordlist as large as or larger than the Xato wordlist.

Besides Xato-based blocklists, we tested a blocklist configuration
that used fs matching with the much larger Pwned wordlist. We
found that 1c8+Pwned-fs and 1c8+Xato-strip-cifs led to passwords
of similar strength, both in terms of overall password strength and
in terms of resistance to online and offline guessing attacks. Par-
ticipants also reported similar usability during password creation.
Although 1c8+Xato-strip-cifs participants were much more likely to
report noticing a password they wanted to create being rejected by
the blocklist requirement than 1c8+Pwned-fs participants (FET: 50%
vs. 23% noticed), they did not take substantially longer to create
their password nor report more difficulty or annoyance. Thus, we
conclude that blocklists that perform fs checking against the Pwned
wordlist can provide comparable protections against guessing at-
tacks and similar usability compared to blocklists that perform
strip-cifs checking against the Xato wordlist.

4.3 RQ3: Composition requirements for
min-strength policies
We examined whether certain combinations of minimum-strength

and composition requirements would lead to stronger or easier-to-
create passwords. As we had hypothesized that a NN6 requirement

Condition #in #in Part1 Creation Creation Creation Guessed Guessed Noticed Stored Recall Recall
Part1 Part2 dropout time difficult annoying @ 10° @ 10" reject pwd success time
Experiment 1
CMU 290 228 14% 104 s 34% 42% 1.2% 36.3% 50% 57% 74% 26s
3c8 284 235 15% 78 s 25% 37% 4.5% 44.8% = 52% 80% 24s
4c8 297 237 10% 84s 31% 35% 5.4% 48.4% - 44% 76% 27s
1c8 318 250 13% 86's 25% 28% 6.3% 48.2% = 53% 78% 21s
3c8+NN6 264 213 15% 92s 33% 38% 0.4% 41.3% 22% 56% 79% 21s
1c8+NN12 261 213 14% 100 s 36% 44% 0.4% 13% 46% 56% 75% 28's
1c8+NN6 288 229 10% 73s 22% 33% 1% 48.3% 20% 50% 79% 21s
3c12+NN6 257 212 15% 99 s 31% 37% 0% 27.6% 16% 53% 75% 25s
1c16+NN6 276 209 11% 97 s 37% 45% 0.4% 15.2% 16% 50% 82% 25s
2c12+NN6 294 231 13% 86s 26% 33% 0% 29.6% 20% 50% 66% 23s
3c8+Xato-cifs 337 256 10% 81s 25% 34% 3.8% 51.4% 23% 48% 76% 20s
1c8+Xato-cifs 287 241 14% 70 s 26% 32% 4.5% 46.6% 32% 54% 77% 19s
1c8+Pwned-fs 292 242 13% 85s 24% 28% 0% 41.9% 23% 52% 86% 23s
1c8+Xato-strip-cifs 311 267 12% 93s 27% 35% 1% 41% 50% 53% 79% 25s
1c8+Xato-ciss 261 200 26% 139s 49% 47% 0% 24.4% 78% 65% 67% 23s
Experiment 2
CMU 429 333 13% 98 s 33% 42% 1.6% 37.9% - 56% 81% 24s
1c8+NN8 381 291 11% 86's 30% 35% 0.8% 40.2% 27% 50% 72% 24s
1c8+NN10 385 293 13% 109 s 33% 38% 0.5% 31.7% 34% 52% 80% 24s
1c10+NN8 381 286 11% 89s 32% 40% 0.8% 31% 25% 51% 77% 23s
1c10+NN10 401 303 12% 92's 32% 41% 0% 25.2% 30% 49% 75% 27s
1c12+NN10 378 273 14% 95s 28% 38% 0.3% 19.8% 22% 58% 73% 22s
1c8+Pwned-fs 435 322 16% 83s 25% 33% 0.7% 43% - 47% 75% 25s
1c8+Xato-strip-cifs 434 327 11% 97 s 29% 35% 2% 40.1% - 55% 76% 21s
4c8+Pwned-fs 378 287 16% 90 s 29% 33% 3.1% 50.6% - 56% 71% 24s
4c8+Xato-strip-cifs 403 299 14% 99s 32% 41% 1.4% 41.7% - 51% 81% 25s

Table 2: Descriptive statistics for Experiments 1 and 2. Recall time and success rates are for Part 2. Median creation and recall
times are shown. “Noticed reject” refers to rejection by a minimum-strength or blocklist requirement.

would provide sufficient protection against 10° online attacks, we
focused on NN6 policies and varied composition requirements. All
pairwise comparisons were made against the 3c8+NNG6 baseline,
as our initial retrospective analyses suggested the 3¢8+NN6 pol-
icy would produce overall stronger passwords than other NN6
policies. We find that while minimum-strength policies can be
strengthened against offline attacks by either increasing the
minimum required length or the minimum number of char-
acter classes, increasing the minimum length accomplishes
this at a lower usability cost, in terms of how long users need
to create a compliant password and how annoying or chal-
lenging they find that task.

As shown in Figure 3, combining a NN6 minimum-strength
requirement with different additional requirements led to pass-
words that differed substantially in overall guessability (PP). We
did not find statistically significant differences in the number of
NN6 passwords guessed for online attacks (i.e., up to 10° guesses).
However, against a 1014 offline attack, policies differed in their de-
fensive effectiveness. While 1c8+NN6 provided similar protection
to 3¢8+NN6 (48% vs. 41% guessed, respectively), 1c16+NN6 (15%
guessed), 2c12+NN6 (30% guessed), and 3c¢12+NN6 (28% guessed) all
offered significantly more protection than 3¢8+NN6 (FET).

- 1c8+NN6
1c16+NN6
- —-2c12+NN6
© 40| ~3c8+NN6
] °l ~3c12+NN6
3
[o2}
BN
2
L20%
£
=
[$)
0% —

3 4 5 6 7 8 9 10 11 12 13 14
log min-auto guess number

Figure 3: Min-auto guess numbers for policies containing
NNG6 requirements and varying composition requirements.

Most of the NN6 policies we tested showed similar usability prop-
erties relative to our 3c8+NN6 baseline; only 1¢8+NN6 performed
better on two of our usability metrics. Compared to 3¢8+NN6 par-
ticipants, 1c8+NN6 participants reported password-creation to be
less difficult (FET: 22% vs. 33% found difficult) and also took less
time (MWU: median of 73 s vs. 92 s).

Overall, our results show that, for policies enforcing a particu-
lar minimum-strength requirement, more complex composition
requirements can lead to passwords that are more resistant to
guessing attacks, particularly for offline attack scenarios. While
our results show that requiring more character classes or longer
passwords both make passwords stronger, we found evidence that
increasing the length requirement could produce larger security
benefits than increasing character-class-count requirements, while
also having less of a negative impact on password-creation usability
(e.g., 1c8+NN6 vs. 3¢8+NN6, compared to 3¢8+NNG6 vs. 3¢12+NN6).

4.4 RQ4: Blocklists vs. min-strength policies

A high-level goal for both experiments was to compare 1c8 poli-
cies that incorporated a blocklist requirement to those that instead
incorporated a minimum-strength requirement. In Experiment 1,
we found that a 1¢8+NN6 minimum-strength policy can pro-
vide similar protection against online attacks and similar us-
ability compared to the two best-performing blocklist poli-
cies we tested. In Experiment 2, we compared those two blocklist
policies to two additional minimum-strength policies, 1c8+NN8
and 1c8+NN10. Both 1c8+NN8 and 1c8+NN10 led to overall
stronger passwords than the blocklist policies, while main-
taining comparable usability.

4.4.1 RQ4.A. As shown in Figure 2, neither 1c8+Xato-cifs nor
1c8+Xato-ciss resulted in passwords comparable in strength to
those created under 1¢8+NN6. Compared to 1c8+NN6 passwords,
1c8+Xato-cifs passwords were overall significantly weaker (PP).
Ic8+Xato-ciss resulted in passwords that were significantly stronger
than those created under 1¢8+NN6 (PP), but at the expense of the
severe usability issues described in Section 4.2.

Two blocklist policies provided comparable security to 1c8+NNG6,
in terms of general guessability as well as resistance to online guess-
ing attacks: Ic8+Pwned-fs and 1c8+Xato-strip-cifs. We did not find
any statistically significant differences between either blocklist pol-
icy and 1c8+NN6 for any of the usability metrics we measured. Thus
these three policies appear to be suitable for preventing predictable
passwords that might be compromised in online attacks.

CcMU
1c8+Pwned-fs
- 1c8+Xato-strip—cifs s
40%| - 1c8+NN8
1c8+NN10
- 1c10+NN8 x
1c10+NN10 g
- 1c12+NN10 *

20%

Cumulative % guessed

0%

3 4 5 6 7 8 9 10 11 12 13 14
log min—auto guess number

Figure 4: Min-auto guess numbers for Experiment 2 1c8 and
CMU policies.

4.4.2 RQ4.B. As shown in Figure 4, we found that both 1¢8+NN8
and 1c¢8+NN10 policies produced passwords that were overall stronger

when compared to either of 1c8+Pwned-fs or 1c8+Xato-strip-cifs
passwords (PP). For attackers making 10'* guesses, 1c8+NN8§ pass-
words would be guessed with similar success rates compared to
either 1c8+Pwned-fs or 1c8+Xato-strip-cifs passwords. In contrast,
1c8+NN10 passwords remained less likely to be guessed, even against
the number of guesses possible in offline attacks: 32% of 1c8+NN10
passwords would be guessed within 104 attempts, compared to
40% of 1c8+Xato-strip-cifs passwords and 43% of 1c8+Pwned-fs pass-
words (FET). Across our usability measurements, we did not find
statistically significant differences between 1¢8+NN8 or 1¢8+NN10
and either blocklist policy, except when comparing 1c8+Pwned-fs
to 1c8+NN10: 1c8+Pwned-fs participants took less time to create
their pass